
 1

Partly Specified Priority Patterns in Natural Language
Parsing within Dialogue Systems

Gergely Covásznai1,2, Constantine Kotropoulos1 and Ioannis Pitas1

1Artificial Intelligence & Information Analysis Laboratory,

Department of Informatics

Aristotle University of Thessaloniki,

Box 451, Thessaloniki 541 24, Greece.

E-mail: costas@zeus.csd.auth.gr , pitas@zeus.csd.auth.gr

Tel: +30-2310-996361, Fax: 30-2310-998453
2 On leave from the Institute of Mathematics and Informatics, Univ. of Debrecen, Debrecen Hungary

E-mail : kovasz@math.klte.hu

Abstract
In this paper, two essential problems that belong to language parsing and have arisen from dialogue management
are discussed and solved by implementing a variant of the well-known context-free parsing algorithm [1]. The
first problem is the use of partly specified patterns, i.e., the use of wildcards in the right-hand-sides of the
rewriting rules of a context-free grammar. The second one is the use of priority patterns, i.e., the assignment of
priority values to rewriting rules. These problems are not handled in the majority of the state-of-the-art dialogue
systems. The proposed algorithm has been implemented in a dialogue system core application called CAML
Core [7], that is used to implement dialogue systems in several domains like conversational and multimodal
interfaces for help desk applications, and chat bots.

Keywords

Dialogue Systems, Conversational Agents, Context-Free-Parsing, Early Algorithm.

1. Introduction

Nowadays, human-machine interaction undergoes through spoken dialogues. Many dialogue systems have been
developed and used in several domains, e.g., help desk applications, airplane/train ticket reservation systems,
chat bots, etc. Each dialogue system includes a module that performs natural language parsing and
understanding, i.e., the extraction of semantic information (let us say meaning) from an input spoken by a user.
Several techniques exist for natural language parsing. The most frequent technique is a context-free grammar. A
problem inherent in a context-free parser is the use of only fully specified patterns, i.e., rewriting rules that have
fully specified right-hand-sides. It would be a very useful facility to support wildcards within the aforementioned
right-hand-sides. A wildcard can get a text value based on the current user input, i.e., a rewriting rule having a
wildcard in its left-hand-side is not fixed a priori. Let us see why it is important to use wildcards in natural
language parsing:

• Extracting unpredictable information and using it in the dialogue later. There are unpredictable
segments in a dialogue, i.e., it is impossible to prepare a context-free grammar including all necessary
rewriting rules. For example, the extraction of user's name at the beginning of the dialogue, as can be
seen in Figure 1.

 2

• Checking the validity of text out of the context-free parser: The validity of a text assigned to a wildcard
can be checked by the dialogue system, which can perform this check even by the contribution of
external resources, e.g., the dialogue system can check whether the given text can be found in an
external database, as shown in Figure 1. This facility is very useful in order to create easily configurable
dialogue systems since not all the data should be incorporated in the dialogue system a priori.

Fig. 1. The use of wildcards in patterns.

The majority of the state-of-the-art dialogue systems employ natural language parsers that allow only the use of
fully specified patterns, like the Phoenix Semantic Parser [8] or the Dialogue Management Tool [9]. Another
facility that is quite important and usually not supported in natural language parsing is the use of priority
patterns. The need of assigning priority numbers to patterns has arisen from dialogue management, where a user
input is processed usually in several steps, from the step of the highest priority toward the step of the lowest
priority. An example with three steps is shown in Figure 2. The processing of a user input halts at the first step if
the input has been recognized completely. It would have halted at the second step if it has not halted at the first
step and some a priori keywords have been recognized in the input (e.g., ``museum''). Furthermore, it gets to the
last step if it has not halted before.

Fig. 2. The priority in dialogue management steps and related patterns.

In this paper, we are introducing a variant of Jay Earley's context-free parsing algorithm [1] that can handle
wildcards and priority rewriting rules. The improvement we have made to this algorithm may serve as an
example for improving other context-free parsing algorithms.

2. Context-free Parsing and the Basic Algorithm

2.1. Extending context-free grammars with wildcards

A context-free grammar is a quadruple Φ,,, SVV NT

 where ∅=VV NT
∩ , V NS∈ , and

)(VVV NTN ∪×⊆Φ . A denotes Ai

i
∪
∞

=0

 for any set A . The elements of V T
are called terminal symbols

 3

and denoted by cba ,, in this paper. We call the elements of V N
 non-terminal symbols, and denote them by

.,, CBA We refer to strings that are elements of *)(VV NT
∪ as .,, γβα The empty string is denoted by .λ

Any element of Φ is called a rewriting rule, and is written in the form).(α→A The language generated by a
context-free grammar G is denoted by).(GL The aim of parsing is to show whether an input string of the form

)(,...,2,1 GLwww n∈ , where Vw T ,1∈ ni ,...,2,1= and 0≥n , and to construct a parse-free grammar if the

answer is “yes”.

In order to use wildcards in context-free parsing, we have to extend the aforementioned concepts. A grammar
can be written as a quintuple Φ,,,, VSVV WNT

. VV NW ⊂ and its elements are called wildcards. During

the parsing for an input string, Φ may be extended with new rewriting rules having a wildcard in their left-
hand-sides. The right-hand-sides of these rewriting rules depend on the current input string.

2.2. The Sequential Nature of Parse-trees

Since natural languages are based inherently on ambiguous grammars, it usually happens that more than one
outputs (i.e., parse-trees) can be constructed for one input string. This is especially true when wildcards are used,
since it may happen several possible texts to be assigned to a given wildcard. If priorities are assigned to the
rewriting rules in a dialogue system, the parser must emit the parse-trees in the order of their priorities that can
be computed on the basis of the priorities of the rewriting rules. This is why we need a parsing algorithm which
can deal with a sequence of outputs.

2.3. The Basic Algorithm

The basic algorithm is used to parse in a context-free grammar that does not include wildcards. It emits the
parse-trees one after the other. This is why it possesses the ability to emit the parse-trees in a pre-defined order.
This algorithm will be improved in Section 3 in order to handle wildcards and priority. In contrast with the
algorithm published in Jay Earley's [1], the proposed algorithm is not only a recognizer, but even a parser, i.e., it
emits parse-trees instead of acceptance or rejection. Furthermore, our algorithm saves space by erasing those
states which are not necessary in the future.

The states are gathered in the ordered set .Parse An ordered set K can be represented in the form

,0,...
,2,1

≥kppp k
 where p1

 is its first element, p2
 is its second element and so on. The number of

element of K is written in the form ..sizeK The i th element of K).1(sizeKi ≤≤ can be denoted by []iK .
The operation of appending a new element p to K is denoted by).(. ppushK Furthermore, erasing the i th
element is denoted by).(. ieraseK A state is written in the form][πβα ,)(,, •→Aji , where

VV TN
njni

,
,0,0 ∩∉•≤≤≤≤ and π is an ordered set of “pointers” to other states, i.e., their location within

.Parse π contains as many pointers as the number of the non-terminal symbols in .α

In order to erase the unnecessary states, we shall use the indicator deletable, which can get a boolean value
TRUE or FALSE. As can be seen in the algorithm given in Figure 3, the states that are erased are not used for the
operation completion. The tasks corresponding to the three basic operations of Earley's algorithm, namely the
scanning, the completion, and the prediction, are indicated. Since arbitrary context-free grammars can be used
(i.e., they may contain a rewriting rule)(λ→A) the completion cannot be applied in a straightforward way as
mentioned in [1]. Accordingly the completion is performed in two symmetrical steps.

 4

Fig. 3. The basic algorithm.

The basic algorithm provides a check whether a constructed parse-tree is valid. If it is not, the parsing continues
until either another parse-tree is constructed, or the algorithm halts with rejection. The validity condition is
called CHECK_PARSETREE, and it can be customized on-demand.

3. Using Wildcards and Priorities in the Improved Algorithm

The main aim of this section is to improve the basic algorithm in order to make it able to parse in grammars
containing wildcards. An additional aim is to handle the priority of rewriting rules. The following changes are
necessary in the basic algorithm:

• specifying the dotted rules in the prediction in the case of V W
B∈ ;

• handling the priority of the parse-trees;
• representing distinct types of wildcards.

3.1. Prediction

In the prediction, a dotted rule)(γ•→B added to Parse must be specified by the content of the input string

if V W
B∈ . If the i th symbol in the input string is the next one which should be parsed then the dotted rules

),(•→W),(wi
W •→)(

1ww ii
W

+
•→ ,…,)(

1 www nii
W "

+
•→ should be added to Parse .Since the

right-hand-sides of these rules are constructed based on the input string, all of them will be used in the scanning
until the completion is performed on them. Accordingly, the algorithm can append the completed form of these
dotted rules to Parse immediately in the prediction, in order to save time. After all, the point 6(b) of the
algorithm is modified as follows.

 5

The condition CHECK_WILDCARD is a check whether a text is valid to be assigned to a wildcard. This facility
makes us able to categorize wildcards on-demand.

3.2. Priority

The algorithm must emit the parse-trees in the order of their priority. At any point of parsing, the algorithm must
finish the construction of the parse-tree having the highest priority before continuing to the construction of the
other ones. Accordingly, the operation push used in the basic algorithm cannot be performed in the proposed
variant, because it places a newly generated state at the end of Parse , i.e., after the states that belong to the
parse-trees with a lower priority. From now on, the operation insert will be used instead of push . For an
ordered set K ,),(. ipinsertK represents the insertion of a new element p into K at the position i

)1.1(+≤≤ sizeKi . In the case of),(. ipinsertK each element of K after the position 1−i is shifted to one
higher position.

In the algorithm, the operations of pushParse. must be changed at the points 1.(b), 5, 6.(a), 6.(b).i, 6.(b).ii, and
7. as follows.

Actually, Parse represents a compound data structure after these changes. This data structure consists of a
vector and a stack; its elements before the position pointer belong to the vector, and the other ones to the stack.
The pointer points to the top element of the stack. The vector contains the states which have been already used
for constructing a parse-tree, and might be used in the completion in the future. The stack contains the states
which have not been used yet, ordered by the priority of parse-trees.

What a parse-tree with a higher priority is, should be specified by the dialogue system. Usually, a measurement
is defined in a dialogue system in order to calculate the priority of rewriting rules. Our algorithm can be
improved in order to access earlier the rewriting rules having higher priority than the others of lower priority.
This improvement is very simple: at each point of the algorithm where a universal quantifier (“for all”') is
located (at the points 1.(b), 6.(a), 6.(b).i, 6.(b).ii, and 7.), the quantifier is replaced with a loop. Such a loop must
access the elements referred by the quantifier and place them onto the stack in reverse order of priority, i.e., from
the element having the lowest priority toward the one having the highest priority. In 6.(a) and 7., it is enough to
access the states backwards in Parse (from the position pointe-1 toward 1), since these states are already
ordered in Parse by the priorities of the parse-trees.

3.3. The Types of Wildcards

Two types of wildcards are distinguished based on the priority of parse-trees. A wildcard is greedy if assigning a
lengthy string by the parse tree to it has higher priority than assigning a short sting. All the other wildcards are
non-greedy. Greedy wildcards can be implemented by specifying the priority of rewriting rules used in 6(b)ii in
the following way: the rule)(αaB → has higher priority than)(α→B . Wildcards can be further classified by
customizing the condition CHECK_WILDCARD, e.g., we can distinguish the wildcards whose length is at least

 6

one character from those whose length is at most one word, etc. In the first case,
CHECK_WILDCARD λγγ ≠:)(.

In Figure 4, the parsing in a grammar including greedy and at-least-one-character-long wildcards is
demonstrated. The states are enumerated by their location in Parse . The non-numbered states are erased during
parsing, the numbered ones are located in the final Parse . The framed states represent the parse-trees which
can be emitted; they are shown in the figure as well. For the sake of completeness, we have not stopped the
parsing at any of the framed states, i.e., we have supposed a constantly false condition for
CHECK_PARSETREE.

Fig. 4. Examples of parsing with two greedy wildcards.

4. Implementation

In our previous work [7], an XML-compliant dialogue system configuration language called Conversational
Agent Markup Language (CAML) and a dialogue system core architecture called CAML Core was proposed.
The proposed algorithm was incorporated in the CAML Core. CAML provides facilities to use greedy and at-
least-one-character-long wildcards in patterns. Furthermore, it assigns priority numbers to the patterns by user's
demand. In Figure 5, an example CAML unit (category) is shown. It specifies two patterns having the same
priority. Both of them contain a wildcard. When a parse-tree has been emitted by the language parser of the
CAML Core, the text assigned to the wildcard is stored in a variable called museum_name. At this point, the
system checks the condition CHECK_PARSETREE, which is specified in the condition tag, i.e., it performs
an SQL query in an external database specified by the parameter database whether the value of the variable
can be found in its table called “MUSEUMS”. The result of the database query is to be stored in the variable
museum_history. If the value of this variable does not equal to the empty string, i.e., the SQL query has any
result, then the CHECK_PARSETREE returns TRUE, otherwise FALSE. After the parsing has halted with
acceptance, the system executes the content of the action tag, i.e., the value of the variable
museum_history is emitted. In Figure 6, the parsing of a spoken user input is demonstrated.

 7

Fig. 5. A CAML category including wildcards.

Fig. 6. Example of a natural language parsing.

5. Conclusions

A context-free parsing algorithm has been developed that supports the use of wildcards and priority values in the
rewriting rules. Both features are desirable and very essential entities in dialogue systems. The algorithm has
been incorporated in our own dialogue system core, namely the CAML Core.

 8

Acknowledgments

This work has been by the European Union funded Research Training Network “Multi-modal Human-Computer
Interaction” (MUHCI).

 References

1. Early J., “An efficient context-free parsing algorithm”, Communications of the ACM, vol. 13, no. 2,
1970.

2. Morawietz F., “Chart parsing and constraint programming”, in Proc. of Coling 2000, Saarbrüken,
2000.

3. Suereth R., “Developing Natural Language Interfaces”, N.Y.: McGraw-Hill, 1997.
4. Ole Bernsen N., Dybkjær H. and Dybkjær L., “Designing Interactive Speech Systems”, London:

Springer-Verlag, 1998.
5. Huang X., Acero A. and Hon, H.-W., “Spoken Language Processing”, Upper Saddle River, N.J.:

Prentice Hall PTR, 2001.
6. Gorin A.L., Abella A., Alonso T., Riccardi G. and Wright, J.H., “Automated natural spoken dialog”,

IEEE Computer, vol. 35, no. 4 pp. 51-56, April 2002.
7. Kovácznai G., Kotropoulos C. and Pitas I., “CAML: A universal configuration language for

dialogue systems”, in Proc. DEXA-2003 Conf. Prague, 2003, to appear.
8. Ward W., “Understanding spontaneous speech: The Phoenix system”, in Proc. ICASSP 1991, pp.

365-367, 1997.
9. Gustavsson C. Strindlund L. and Wilknertz E., “Dialogue management tool”, in Proc. OzCHI 2001

Workshop, 2001.

