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Abstract— This paper addresses the problem of unsupervised speaker
change detection. We assume that there is no prior knowledge on the
number of speakers or their identities. Two methods are tested. The first
method uses the Bayesian Information Criterion (BIC), investigates the
AudioSpectrumCentroid and AudioWaveformEnvelope features, and
implements a dynamic thresholding followed by a fusion scheme. The
second method is a real-time one that uses a metric-based approach
employing line spectral pairs (LSP) and the BIC criterion to validate a
potential change point. The experiments are carried out on two different
datasets. The first set was created by concatenating speakers from the
TIMIT database and is referred to as the TIMIT data set. The second
set was created by using recordings from the MPEG-7 test set CD1
and broadcast news and is referred to as the INESC dataset.

I. INTRODUCTION

Speaker segmentation aims at finding the changing points be-
tween two successive speakers in an audio stream. It is of extreme
importance, as it is a preprocessing task for audio indexing, speaker
identification - verification - tracking, automatic transcription, etc.
Massive research has been carried out during the last decade in this
area. Tritschler and Gopinnath proposed the use of the Bayesian In-
formation Criterion (BIC) over mel-cepstrum coefficients (MFCCs)
[4]. Delacourt and Wellekens proposed a new two-pass segmen-
tation technique called DISTBIC and improved performance by
adding more similarity criteria including the Generalized Likelihood
Ratio (GRL), the Kullback-Leiber distance (KL), etc. [2]. Ajmera
et al introduced an alternative of BIC, which does not need
tuning, and some heuristics [3]. Meanwhile, novel features like the
smoothed zero crossing rate (SZCR), perceptual minimum variance
distortionless response (PMVDR) and the filterbank log coefficients
(FBLC) were introduced by Huang and Hansen [10]. Another
method is the so-called METRIC-SEQDAC [9]. Finally, a hybrid
algorithm is proposed, which combines metric-based segmentation
with the BIC criterion and model-based segmentation with Hidden
Markov Models (HMMs) [7].

The major contribution of this paper is in the comparative
performance of two speaker segmentation systems. Both systems
are based on the BIC and their efficiency is tested on two different
datasets using the same experimental protocol. The first system
utilizes the AudioSpectrumCentroid and AudioWaveformEnvelope
[1], a dynamic thresholding which adapts its value according to
the audio stream, and a fusion scheme which combines the partial
results so as to achieve better scores than those obtained by the same
algorithm without fusion. Moreover, every speaker is modeled by a
Gaussian probability density function in this system and whenever
more information is available, the speaker model is updated [8]. A
multiple pass algorithm is developed that employs a distinct feature
in each pass. Each pass is executed independently from others. The
second system is a real-time speaker change detection system. It is
able to recognize speaker turn points with the shortest possible delay
and without having access to the whole speech stream. This scenario
does not utilize iterative techniques, as the first system does, and

imposes limitations on the computational load of the algorithm.
Similar arguments were also explored in [5], [6], [8]. In this second
system, the processing is divided into two main stages: In the first
stage, a metric-based approach is implemented for coarse speaker
segmentation using Linear Spectral Pairs (LSP). In the second stage,
the BIC criterion is used to validate the potential speaker change
points detected previously.

The rest of this paper is organized as follows. In Section II, the
two systems are described. Experimental results are demonstrated
in Section III and conclusions are drawn in section IV.

II. TWO SYSTEMS FOR SPEAKER CHANGE DETECTION

A. The first system

A BIC-type criterion is applied [2], [3], [4], [7], [9] and the
BIC variant proposed in [3] is used. Speaker change detection is
formulated as a hypothesis testing problem. We assume that there
are two neighboring chunks X and Y around time cj and the
problem is to decide whether or not a speaker change point exists
on cj . Let Z = X ∪ Y .

Under H0 there is no speaker change at time cj . The maximum
likelihood (ML) principle is used to estimate the parameters of
the chunk Z that is modeled by a GMM of two components.
Let us denote the GMM parameters estimated by the expectation-
maximization (EM) algorithm as θz . The log likelihood L0 is
calculated as

L0 =

Nx
∑

i=1

log p(xi|θz) +

Ny
∑

i=1

log p(yi|θz) (1)

where Nx and Ny are the total number of samples in chunks X

and Y , respectively.
Under H1 there is a speaker change at time cj . The chunks

X and Y are modeled by multivariate Gaussian densities whose
parameters are denoted by θx and θy . Then, the log likelihood L1

is given by

L1 =

Nx
∑

i=1

log p(xi|θx) +

Ny
∑

i=1

log p(yi|θy). (2)

The dissimilarity is estimated by

d = L1 − L0 −
λ

2
· ∆K · log N (3)

where N is the total number of samples in chunk Z, λ is the penalty
factor (ideally 1.0) tuned according to data and ∆K is the number
of the model parameters [2], [3]. If d > 0 then a local maximum
is found and time cj is considered to be a speaker change point. In
the case d < 0, there is no change point at time cj .

The selection of the appropriate features is of great importance
since the accurate description of the audio signal is vital. We utilize
the mel cepstrum coefficients (MFCCs), the maximum magnitude of



the DFT coefficients in a speech frame, the short-time energy (STE),
the AudioSpectrumCentroid, and the AudioWaveformEnvelope.

Multiple passes are allowed. In the first four passes we use
the MFCCs; in the fifth pass the maximum of DFT magnitude;
in the sixth pass the STE; in the seventh pass the MFCCs; in
the eighth pass the AudioSpectrumCentroid; in the ninth pass the
max FFT amplitude, and in the last pass AudioWaveformEnvelope.
The reason why multiple passes are employed is that after each
pass, the number of chunks is decreased, because specific potential
change points are discarded being false. So the length of chunks is
becoming larger. Several researchers have come to the conclusion
that the larger the chunks are, the better the performance is, because
there is enough data for satisfactory parameter estimation of the
speaker model [2], [4], [5], [6], [8], [10]. The decisions taken in
one pass are fed to the next pass as in a Bayesian network.

Every speaker is represented with a multivariate Gaussian prob-
ability density function. So for every speaker we keep the mean
vector µ and the covariance matrix Σ that are automatically updated
when more data are available. Utilizing the fact that the chunks are
becoming larger, we employ a constant updating of the speaker
models [5], [6], [8], [10].

The dynamic thresholding refers only to scalar features. We start
with an ad hoc threshold t which may vary. The ad hoc threshold
is determined after a considerable number of experiments during
which we measure the efficiency for different thresholds and then
we retain the threshold which maximizes the efficiency. Let us
consider a recording that has I chunks and I − 1 possible speaker
change points. The value of I is determined at the previous pass.
We test the possible speaker change point cj which lays between
chunks k and k + 1. If f(k) is the current feature value computed
at chunk k, we estimate f(k) and f(k + 1) and then we calculate
the value of the absolute difference between these values denoted
by ε:

ε = |f(k + 1) − f(k)|. (4)

Let ε̄ be the mean value of ε over all chunks of a recording:

ε̄ =

∑I−1

l=1
|f(l + 1) − f(l)|

I − 1
. (5)

Then ε̄ is compared to t, whose value is adjusted by adding or
reducing 0.5% of ε̄ and the new adjusted threshold t′ is:

t
′ =

{

t + 0.005 · ε̄ when t < ε̄

t − 0.005 · ε̄ when t > ε̄.
(6)

In order to estimate the GMM that is needed in (1) the EM
algorithm is used, which may converge at local minima. However,
there is no guarantee that this local minimum coincides with the
global minimum or that there is only one local minimum. This
issue, combined with the fact that BIC is a weak classifier leads us
to propose a fusion scheme. Thus, we could theoretically reduce the
error introduced by the EM algorithm by repeating the experiment
multiple times, say R times. In other words, a majority voting takes
place in each pass. To be more specific, for each pass we obtain
a set of possible speaker turn points. Let us denote it by Ci =
{c1, c2, . . . , cj}, where i is the running number of the experiment
and c1, c2, . . ., cj are the potential speaker change points. The
final set of change points Cf of that pass consists of those potential
speaker change points cj that make their appearance at a sufficient
frequency S. Both R and S are determined heuristically. Typical
values for R and S are 5 and 4, respectively. The algorithm is
summarized as follows.

1) Initialize R, S, Cf =∅

2) for i = 1 : R find Ci = {c1, c2, ..., cj}
3) ∀ cj in all Ci

if Total-Count-Of-cj > S then Cf =Cf ∪ {cj}.

where by the term Total-Count-Of-cj we denote the number of
times the potential speaker change point cj appears in all possible
speaker turn points sets Ci, i = 1, 2, . . . , R. Diagrammatically,
the algorithm is depicted as a directed graph in Figure 1 which
represents a causal network in the horizontal direction. Apparently,
pass1 affects pass2-pass10 and so on. Finally, f , f ′, f ′′ are the
features that are implemented in each pass.

pass 1

R

pass 2

R

pass 10

R

f’ f”

f
Cf Cf Cf

Fig. 1. The flow of the first algorithm.

B. The second system

The second system starts by down-sampling the input speech
audio to 8 kHz, 16 bits mono channel format and applying pre-
emphasis. The speech stream is then divided into analysis frames
with a duration of 25ms and no overlap, from which Zero Crossing
Rate (ZCR), Short Time Energy (STE), and 10-order LSP features
are extracted to a feature vector. The system considers only voiced
parts of the speech signal, using ZCR and STE features to discard
unvoiced and silence frames. In a first stage, speaker change
detection is coarsely performed using a metric-based approach
to calculate the distance between consecutive speech segments.
Assuming that the LSP features are Gaussian distributed, each
speech segment can be represented by a multivariate Gaussian
N (µ,Σ). The Kullback-Leibler (K-L) divergence shape distance
[11] is then used to estimate the distance between two speech
segments i and j:

D(i, j) =
1

2
tr[(Σi − Σj)(Σ

−1

i − Σ
−1

j )] (7)

where tr stands for the trace operator. The speech segments are
formed by accumulating the necessary number of voiced frames
until there is sufficient data to prevent the ill-calculation of the 10th-
order LSP covariance matrices used to model each speech segment.
This implies that each speech segment should at least include 55
voiced frames which corresponds to a minimum segment duration
of 1.375 seconds of voiced speech. The hop size of the sliding of the
segment window is 0.5 seconds of voiced speech. As a consequence
of this dynamic segment size and hop values, the absolute duration
and start time of each speech segment is dynamically adjusted
depending on the voiced content in each speech segment. This
approach enables the system to be adapted to different speaking
patterns and languages. On the other hand, the system output delay
is not constant anymore, becoming dependent on this dynamic
windowing design, which could be seen as a drawback. Using the
presented K-L divergence shape distance, a potential speaker turn
point can be detected between two segments whenever the following
conditions are verified:

D(i, i + 1) > D(i + 1, i + 2) (8)

D(i, i + 1) > D(i − 1, i) (9)

D(i, i + 1) > Thi. (10)



The first two conditions guarantee that a local maximum exists.
The third one assures that the prominence of the distance peak is
high enough to be considered relevant. However, it is based on
a threshold, whose value is not trivial to set: a too high value
would imply a high miss detection rate, and a too low value would
increase the false alarm rate. Lu and Zhang [8] propose an automatic
threshold value, which is based on the values of the distances
between the past N consecutive speech segments, defined as:

Thi = α
1

N

N
∑

n=0

D(i − n − 1, i − n) (11)

where N is the number of past distances considered, and α is
a scaling factor. In this system we set N=3 and use α to tune
the system response. Other techniques may be used to increase
the confidence on the speaker change points identified by such a
metric-based approach. One possibility is to use BIC to reduce
the false alarm rate. Assuming two Gaussian models derived
from two speech segments to be N (µ1,Σ1) and N (µ2,Σ2), the
corresponding number of feature vectors as N1 and N2, and a single
Gaussian model estimated using both speech clips N (µ,Σ), the
BIC difference between the two models can be defined as:

BIC(Σ1,Σ2) = 0.5 ·
(

(N1 + N2) log |Σ| − N1 log |Σ1| (12)

−N2 log |Σ2|
)

− 0.5 · λ(δ+
1

2
δ(δ+1)) log(N1 + N2)

where λ is the penalty factor for the model complexity, and δ is
the feature dimension. If BIC(Σ1,Σ2) takes a positive value, the
two speech segments are likely originate from different speakers, so
the speaker change point is accepted. Otherwise, no speaker change
point is declared.

Although the technique seems to be threshold free, in practice
λ serves as a threshold that has to be fine-tuned manually. Fur-
thermore, BIC demands high amounts of data in order to produce
accurate results. Consequently, the system should not rely solely
on the small amount of data available in the two consecutive
speech segments. So as new speech data are received, the system
should incrementally update a speaker model, as happens in the
first system. Though, in the second system we utilize an approach
similar to the one proposed in [8]. Speaker models are stored using
a quasi-GMM approach, a non-iterative solution that allows real-
time operation. We propose a somewhat different implementation
of the quasi-GMM procedure. Assuming that no speaker change is
detected at a determined point, instead of discarding the arriving
speaker data when the model reaches a number of 32 time-
dependent Gaussian mixtures, this implementation marks the oldest
mixture in the current speaker model to be replaced by the new
mixture created (or updated) from the new speech segment data.

As soon as this new mixture weight becomes significant (i.e.
as it models an increasing number of speech frames, achieving a
weight comparable to the one of the mixture marked to be replaced),
the replacement operation is then carried out. This mechanism is
potentially more robust to the effects of speakers whose voices start
to present changes after talking for long periods of time, or to long-
term changes in background noises or recording conditions.

We are in fact comparing the current speech segment modelled
by the multivariate Gaussian N (µ2,Σ2), with the current quasi-
GMM speaker model having S Gaussian densities and denoted
by N (µ1j ,Σ1j), j = 1, 2, . . . S, over N1j feature vectors. This
distance between the density model N (µ1,Σ1) and N (µ2,Σ2)

can be roughly estimated as:

D =
S

∑

j=1

w1j BIC(Σ1j ,Σ2) (13)

where w1j =
N1j

N1

and N1 =
∑S

j=1
N1j . Whenever D > 0,

the potential speaker change previously detected by the metric-
based approach is confirmed as a real speaker boundary by the
BIC refinement procedure.

III. EXPERIMENTAL RESULTS

In order to assess the performance of the aforementioned algo-
rithms two different datasets were utilized. The first set was created
by concatenating speakers from the TIMIT database and is referred
to as the TIMIT data set. TIMIT is an acoustic-phonetic database
including 6300 sentences and 630 speakers who speak English. The
audio format is PCM, the audio samples are quantized in 16 bit, the
recordings are single-channel, the mean duration is 3.28sec and the
st. dev. is 1.52sec. The second set was created by using recordings
from the MPEG-7 test set CD1 and broadcast news and is referred
to as the INESC dataset. In the second set, the audio format is
PCM, the audio samples are quantized in 16 bit, the recordings
are single-channel the mean duration is 19.81sec and the st. dev. is
27.08sec.

Two pairs of figures of merit are used to assess the performance
of a speaker change detection system. On the one hand one may
use the false alarm rate (FAR) and the miss detection rate (MDR)
defined as:

FAR = FA
GT+ FA

MDR = MD
GT

(14)

where FA denotes the number of false alarms, MD the number
of miss detections and GT stands for the actual number of speaker
turns, i.e. the ground truth. A false alarm occurs when a speaker
turn is detected although it does not exist, a miss detection MD
occurs when the process does not detect an existing speaker turn.
On the other hand, one may employ the precision (PRC) and recall
(RCL) rates given by:

PRC = CFC
DET

RCL = CFC
GT

(15)

where CFC denotes the number of correctly found changes and
DET is the number of the detected speaker changes. For the latter
pair, another objective figure of merit is the F1 measure

F1 =
2.0 · PRC · RCL

PRC + RCL
(16)

that admits a value between 0 and 1. The higher its value is, the
better performance is obtained. Between pairs FAR, MDR and
PRC, RCL the following relationships hold:

MDR = 1 − RCL FAR = RCL·FA
DET ·PRC+RCL·FA

. (17)

Tables I and II demonstrate the performance of the first system.
In Table I the results for 10 randomly selected test recordings
extracted from TIMIT database not included in the training set are
demonstrated. The efficiency has been presumed dropping whenever
the speaker’s utterance has a duration of less than 1-2 sec, as it was
expected [2], [4], [5], [6], [8], [10]. In Table II are the respective
results for 14 randomly selected files from INESC database.

Tables III and IV describe the performance of the second system.
In Table III the results for the same 10 randomly selected test
recordings extracted from the TIMIT database are demonstrated.
In Table IV are the respective results for 14 files from INESC
database, which are the same files as above. For both cases a is
equal to 0.4 and λ is equal to 0.9.



TABLE I
PERFORMANCE OF THE FIRST SYSTEM ON THE TIMIT DATASET.

Index PRC RCL F1 FAR MDR
1 0.83 0.56 0.67 0.17 0.44
2 0.90 0.75 0.82 0.10 0.25
3 1.00 0.45 0.62 0.0 0.55
4 0.62 0.82 0.72 0.36 0.18
5 0.64 0.90 0.75 0.36 0.10
6 0.85 0.79 0.81 0.15 0.21
7 0.69 0.65 0.67 0.31 0.35
8 0.93 0.76 0.84 0.07 0.24
9 0.69 0.58 0.63 0.31 0.42
10 0.65 0.69 0.67 0.35 0.31

mean 0.78 0.70 0.72 0.218 0.305
st. dev. 0.137 0.136 0.008 0.135 0.136

TABLE II
PERFORMANCE OF THE FIRST SYSTEM ON THE INESC DATASET.

Index PRC RCL F1 FAR MDR
1 0.12 0.78 0.20 0.88 0.22
2 0.30 0.69 0.42 0.70 0.31
3 0.36 0.77 0.49 0.64 0.23
4 0.14 0.71 0.23 0.86 0.29
5 0.08 0.56 0.14 0.92 0.44
6 0.13 0.67 0.22 0.87 0.33
7 0.12 0.78 0.21 0.88 0.22
8 0.03 0.25 0.05 0.97 0.75
9 0.12 1.00 0.22 0.88 0.0
10 0.19 0.58 0.29 0.81 0.42
11 0.13 0.58 0.21 0.87 0.42
12 0.45 0.72 0.56 0.55 0.29
13 0.03 0.17 0.05 0.97 0.83
14 0.19 0.58 0.29 0.81 0.42

mean 0.170 0.631 0.256 0.822 0.369
st. dev. 0.121 0.213 0.148 0.115 0.212

IV. CONCLUSIONS

The performance of two BIC-based speaker segmentation sys-
tems were compared in this paper. The first system puts a higher
emphasis on the accuracy than the real time operation. The second
system favors real time operation at the expense of performance
accuracy. Each system was evaluated on two datasets. In the first
dataset, where short dialogues are present, the first system yields
an F1 measure equal to 0.72 and outperforms the real time system
achieved an F1 measure of 0.338. In the second dataset, where long
dialogues are included, the second system attained an F1 measure
equal to 0.294. The first system achieved an F1 measure of 0.256,
because the mean duration of a speaker’s utterance in INESC dataset
(19.81sec) is much longer than the mean duration in TIMIT dataset
(3.28sec) that the system was designed for. This leads to over-
segmentation as can be seen from the large FAR.
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