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1. INTRODUCTION

Onc of the most prominent neural networks (NN) in the literature is the Learning Vector
Quantizer (LVQ) [1]. I is an associalive nearest neighbor classifier which classifies p-dimensional
arbitrary patterns into N-many classes using an error-correction learning procedure related to
the competitive learning,.

As its name suggests, LV(Q) 1s essentially a vector quantization method. Motivated by the
following open questions in vector quantization methods, namely, the optimal number of code-
veclors (i.c., output neurons) and the rejection of outliers in the formation of the minimum
distortion partition, a split-merge LVQ algorithm is proposed that incorporates statistical hy-
pothesis testing on mean vectors as well as additional tests that are used to determine if ¢luster
splitting /merging 1s statistically significant.

2. SPLIT-MERGE LEARNING VECTOR QUANTIZER

Learning Vector Quantizer relies on the Fuclidean distance in order to determine the best match-
ing outpul neuron (“winner”). It s well known thal in order lor the Euclidean distance to be
a mosl effective measure, input patterns must be lincarly transformed to another ones that are
uncorrelated and of equal variances [3]. Such a linecar transformation yields 1he so-called Ma-
halanobis distance [2,3]. Tt can be easily scen that by simply replacing the Buclidean distance
with the Mahalanobis one in the IVQ encoding algorithm, the inversion of the sample dispersion
matrix baving dimensions p X p would be required at cach input pattern presentation, It will be
seen later on that by employing tests on the mean veclors as an oullier rejection mechanism a
quadratic form similar to Mahalancbis distance is needed to be evaluated and to be compared
to a thresheold. Butl in the later case, the number of times such an additional computation has to
be performed is limited only to: (i) the pattern presentations during the first session (i.c., when
the whole training sct is presenled o the inpul of TVQ for first time), (i1) the patterns that
move [rom onc cluster Lo another, and, (iii) the patterns of a cluster where a modification (i.c.,
insertion /removal of a pattern) has occurred during the session that modificalion took place.

2.1, Criteria for detecting outliers

I.et us assume that an arbitrary number of outpul neurons exists in the output ol an LVQ. Let
N(0) denotle the number of initial neurons. Since all the statistical tests that will be cmployed
next rely on [first and second-order statistics, each outpul neuron evaluates the sample mean
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vectors and the sample dispersion matrix associated with the cluster it represents. We shall also
asstime thal a counter is associated with cach neuron which connts the number of patterns that
belong to the cluster represented by that neuron. At the beginning, the sample mean m;, the
sample dispersion matrix S; as well as the number of patterns »; ol cach neuron’s cluster arc
appropriately initialized.

Lot us denote by ¢ the index that counts the training sessions. l'or each patiern presentation
x(k} & =1,..., M during the i-th session, the winner newron is found:

_ N (k) .
| x(k) = wiO(k) lI= win {]] x(k) = wi (k) I} (1)

N kY is the number of output newrons when the k-th training vector is presented in the inpul of
IVQ during the 4-th training session. Then, the number of patterns Lhatl are represented by the
winner as well as the sample mean vector of the cluster agsociated with the winner are updated
as if input pattern x(k) were merged into that cluster. Such an updating is required during the
first training session (7 = 1) as well as for ¢ > 2 when (k) # E=1(k), where (k) denotes
the index of the winner neuron al the presentation of the k-th pattern during :-th iteration.
This is case {ii) outlined above. Case (iii) refers to the remaining patterns of a cluster which has
heen modified due to an inserlion/removal of another pattern. Since ¢ (&) = ="(k), lor a
moment, we exclude patiern x(%) from the cluster of patterns that is represented by the winuer,

Let us denote by miﬁ'](ﬁ: — 1) the sample mean voctor of the resulted cluster after the exclusion

of x{k). Our purpose is to test if its inclusion to that cluster is still valid. A similar provision
has to be made lor the sample dispersion matrix of that cluster. Let
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We decide 1hat merging x(k) with the remaining patterns is valid, if [2]:
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where £, _p0.05 denotes the upper 5% level of signilicance lor the I*-distribution with n and

n — p degrees of [teedom.
Il Hq is accepted, then the winner veetor is updated as LVQ suggests [1]:

w(k + 1) = wO(k) + a(i) [x(k) - w (k)] (1)

where o(7) is a variable adaptation step defined as a2} = 0.2 "l - m} [1]. The updating ol

ng}(k— 1) and mgt)(k—l) 10 ngﬂ(k] and m.g_-z](k:) respectively are assurned valid. Furthermore, the
sample dispersion matrix of the cluster associated with the winner is also updated. Moreover, in
case (ii) the number of patterns, the sample mean and the sample dispersion matnx associated
with the cluster of past winner are corrected. For the remaining neurons (i.e., j = 1,..., NE(k),
7 # cin cases (i), (iii) and j # ¢, v in case (i1)), all the corresponding parameters are left intact.



2.2. Splitting criteria

If fIy 1s rejected, it is reasonable to examine whether the cluster represented by the winner
neuron cah be split into two subclusters. Let us denote that cluster by CE)(J;: — 1}. We shall
borrow from the (eld of ¢luster analysis [1.3] a statistic that relies on the sum of squared errors
Je(g), 9 = 1,2 Lo test the va.lid'ﬂ'y of the following possibilitics: (a) cluster ct) (k — l] is kept
united (g = 1), and, (b) closter ¢! (!’;:— 1} is subdivided into two clusters (g = 2), say f ( =~ 1)
and Cifi'(k — 1).

l.cl us deline first the sum of squared errors in cases (a) and {b) outlined above. We have:

- —m (k- 1) for g = |
Jo(g) = onyect gy || X ( )| or g

. (5)
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where mF)(fs: — 1) and m&fj(k' — 1) denote the sample mean vectors of Lhe resulted subclusters.
In the sequel, we shall desceribe how the tentative sphitting 1s performed.

We determine the direction in which cluster C.;Ei}[k: — 1) variation is greatest. This amounts
to finding the principal component of the qampio dispersion matbrix (1. L Lhe cigenvector that

corresponds to the largest cigenvalue of st (k — 1) ). Let us denote by el (Fg — 1) the principal

(normalized) eigenvector of Sm[k — 1). Having determined el ]( — 1), we examine the splitting
of cluster €' }( — 1) with a hyperplane which is perpendicular 1o the direction of ES]UL‘ — 1) and

passes through the sample mean mgfj(h — 1).

[t is well known that splitting ol any cluster 1o two subclusters will result a lower sum of
squared errors, i.e., Jo(2) < J.(1) [1]. We decide to consider as valid any splitting that yields a
statistically significant improvement (i.c., decrease) in the above-mentioned criterion. Following
the analysis given in [4], we acceptl cluster splitting at the p-percentage significance level, if

P 'y 2 1 - Bﬁ
v_rn(‘z) < _i_ﬁ ( WP) (h)
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where p = 100 [° V;J—{J{]I}[—— d. | | | |
If cluster splitting is accepted, we proceed Lo the evaluation of the sample dispersion matrices
for C(E}[ 1) and C;‘;i}(k — 1). Next, it is examined if the current training pattern x(k} can be

merged with one of Lthe subclusters C( (k— 1) or ('[ (B — 1) by applying the statistic described
tn Sect. 2.1, The winner neuron s m_plan:,ed by the two newly crealed ones. Their weight veclors

(1)

are sct equal to the sample mean vectors mg’ (&) and mgfj(k:).

If x(%) cannot be merged with any of the subclusters created by splitting C._{qi](k ~ 1}, & third
subeluster is formed having seed x(k). Finally, we describe what happens when cluster splitiing
is not accepted, i.e., when (6) does not hold. In the later case, the winner neoron 1s kept united
and an additional neuron is formed corresponding to a distinct cluster having sced x(k).

The procedure described so far is applied for cach {raining paitern presentation. When the
training sel has been exhausted, the integrity of the cluster associated with each output neuron
is testod once more by applying the sphitting criterion deseribed above. Having completed the
later test, we compute the average distortion (e.g. MSE) at the end of session 2 as follows:

Z | x(k) — wih (M) |* (7)

kml
IM{D(i— 1) — D))/ D) > ¢ = 0.001, we proceed to an additional training session.



3. EXPERIMENTAL RESULTS

FFour distinct bivariale normal populations have been created.  Each one has 1000 2-d pat-
terns (i.c., points). The statistical description of the ereated populations [ollows: Py is a set
of 2-d patterns distribited according to G{10.0,20.0;0.64, 1.0;0.8); P, is a sel of 2-d patterns
distribuled according to G(20.0,20.0;1.33,1.0; 0.5); Py is a sel of 2-d patierns distributed ac-
cording to G(23.0,16.0; 1.8,1.2;0.0) and P4 is a sct of 2-d patterns distributed according to
G(10.0,10.0;1.0, L.0;0.7) where G(jey, 1o} 01,025 v) denotes a bivariate normal distribution. Pa-
rameters p; and o, 1 = 1,2 are the expected values and the standard deviations along cach
dimenslon respoectively, and r denotes the correlation cocflicient.

The performance of a modified ILVQ algorithm that implements the proposed split-ierge
criteria has been tested against that of a standard LVQ. The modilied LVQ network has two
outpul ncurons initially. ‘T'he number of output neurons for standard TVQ neural network is set
to [ive. Both nevral networks have becen trained by the same sel. ‘The training set is formed by
selecting randomly 10% of the patterns that belong to cach population. Three training scssions
are required for boith NN to converge. Al ithe end of the learning phase, the modihed 1VQ
NN results in five output neurons. Ilach neuron is associated with a cluster where all training
patterns that come [rom a distinct population have been included. In other words, although
the training is unsupervised, we have oblained perlect classification. On the contrary standard
IVQ resulls in three activated oulpul neurons. In Table 1, the learning and the recall MSE are
summarized.
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Table 1
Learning and recall Mean-bguared Error

Mean-Squared Error | Split-merge LVQ | Standard LVQ
l.carning phase 2.530366 h.099298
Recall phase 2.6h9161 n.749121




