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1. INTRODUCTION

Speckle noise is a special kind of noise encountered in uitrasound (US) B-mode images as well
as in images formed by laser beams or in synthetic aperture radar images. It is an interference
effect caused by US beam scattering from microscopic tissue inhomogeneities {1). Suppression
of speckle is desirable in order to enhance the quality of US images and therefore increase the
diagnostic potential of US examinations.

Motivated by the fact that signal-adaptive filters fulfill the requirements for successful speckle
suppression and the attention they have attracted in the literature, signal-adaptive maximum
likelihood (SAML) lilters for ultrasonic speckle hitering are developed. Furthermore, a combined
scheme where setf-organizing neural networks such as the Learning Vector Quantizer [7] or its
variant based on the Ly mean [8] are used in conjunction with signal-adaptive filters is propesed
in order (o allow to aliow image detail and edge preservation as well as maximum speckle
reduction in homogenecous regions.

2. SIGNAL-ADAPTIVE MAXIMUM LIKELIHOOD FILTER DESIGN

An image r can be considered to consist of two parts: a low-frequency part z; and a
high-frequency part zg, ie.,, = 5 + zx [1]. The low-frequency component is dominant in
homogeneous image regions, whereas the high-frequency component 1s dominant near edges.
The low-pass component can be estimated by a local estimator, e.g., the arithmetic mean or the
median of the observations {i.e., pixel values} in a window W surrounding the current pixel (k,!}
(4,5]. The maximutn likelihood (ML) estimator §y77(k,{) of the original signal s(k,!) based on
the observations 2(k - 4,{ — j) € W is proposed as the low-frequency component in this paper.
Thus, the ontput of the signal-adaptive filter, i.c., the estimate of the original signal at (k,1), is
given by:

3k, 1) = dan (k) + Bk, Dk, D) — darp(k, 1) (1)

where z(k,[) is the noisy observation at pixel (&,{}, $psr(k,{} is the maximum likelihood estimate
of s(k,l) based on the observations z(£ — ¢,{ — j) and calculated over a window W surrounding
pixel (k,1), and, B(k,{) is a weighting factor. approximating the local SNR over the window W.

et us assume that ultrasonic speckle can be modeled as multiplicative Rayleigh distributed
noise {in the case ol envelope-detected US B-mode data), or as signal-dependent Gaussian noise
(in the case ol displayed US image data). The lirst model refers to envelope-detected US B-mode
images [1,2]. In this case, the observed envelope-detected signal z is related to the original signal
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s by x = sn where n is a noise term statistically independent of s. It has been proven that
the ML estimator of a constant original signal s = 5 based on N observations X, X9,..., Xy
assuming that n is a Rayleigh r.v. with unity expected value is given by [3]:

A VTl Lgh ,,
SML = T\ ﬁ; X? (2)

which is equivalent to the 1o mean [41] scaled by a factor of -‘/E—F The second model describes
more accurately ultrasonic 1mages where the displayed image data have undergone excessive
manipulation (e.g. logarithmic compression, low and high-pass filtering, postprocessing, ctc.)
[2]. Therefore, let us assume the following image formation model: z = s + s'/%n. It has also
been proven that the ML estimate of 5 based on ¥ observations X, X,,..., Xy assuming that
n is a zero-mean Gaussian random variable having variance o is given by [6]:

a?

ad | N )
ML = —— + 4| — 4 — 3 X2
SMI 5 -+ 7 + Ni:l ; (3)

Let e{k,l} = Ew|(s — §)] denote the local mean squared error (MSE) between the noiseless
signal s(k,!) and its estimate $(k,!) obtained by (1) at pixel (k,1}, where Ew[-] denotes a local
expectation operator. It can easily shown that e can be rewritten as {ollows:

e = Ewl(s — dmr)*] + B2 Ewl(z — 8ar2)%) — 26Ewl(s - $mr)(= ~ dar1)]- (4)

Diffcrentiating with respect to [ and setting the result equal to zero we get:

r

1—-(355) Ew[?irﬂ;,}?] for the multiplicative noise model

ﬁ:il (5)

1 - EwF[:{p;EE]::L}*] for the signal-dependent noise modet.

In general, 3 can be considered as a local signal-to-noise ratio measure [5]. The role of the signal-
dependent weighting factor 3 {5) is to adjust the magnitude of the filtering to be performed by
(1) as well as to adjust the size of window W, i.e., to control how many pixels in the neighborhood
of pixel (£,{) will be included in W. We can start filtering by using initially a window of size
5x5 or Tx7. Hf the factor g{k,{) becomes greater than an appropriate threshold 3,;, the window
size 1s decreased until the coefficient becomes less than the threshold or until the window reaches
the size 3 x3. Otherwise, the window is incrcased to its maximum size.

In the following, a modification of the SAML filter that utilizes segmentation information
obtained prior to the filtering process is discussed. An image can be scgmented into regions
representing various image characteristics by a variety of techniques that can be found in digital
image processing literature as well as by using seif-organizing neural networks such as the LVQ
[7] or its variant L, LVQ |8]. We shall focus on the neural network approach to ultrasonic image
segmentation. Since the output neurons of L4 LVQ) correspond to the Ly mean of input obser-
vations whereas those of LV(} correspond to the sample arithmetic mean of input observations,
we conclude that L, LVQ is more snitable for ultrasonic images. Therefore, L, LVQ will be used
to segment both simulated US images as weil as real scans.

Let us denote by £(k,!) the class label assigned to pixel (k,1) of the original image by using
an image segmentation algorithm. We shall assume that the original image is segmented into
p classes. If the label assigned to the first class is 0, £{k,{) will vary between 0 and p - 1. In
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the case of a two-class US image segmentation, the label ( can be assigned to pixels belonging
to the background and the label 1 can be assigned to pixels that belong to arcas that have high
signal activity. In the general case of a p-class US image segmentation, label 0 is assigned to
background pixels and the remaining classes are labeled according to their signal activity (e.g.
frequency content). The classes that have the higher signal actlvity correspond to image details
(e.g. boundaries of blood vessels). The more detfails an image region has the higher label is
assigned to it. Let us also define by

1
seg( ko 1) = - E —~ gl =

a quantity that represents the average class label that appears in the filter window W scaled in
the range [0,1]. In {(6), N(WW) denotes the number of pixels included in the filter window (i.e.,
the window size). It can be seen that 3seq varies between 0 and 1. It tends to 0, when the pixels
that belong in the lowest signal activity class dominate in the filter window W surrounding pixel
(£,1). On the contrary, it tends to 1 when the pixels in the filter window W surrounding pixel
(k,1) that belong to the highest signal activity class are in the majority. Since f#,., € [0,1], it
can be used as weighting factor in the signal-adaptive filter (1). It js seen that by using (6)
as weighting factor, the classes that correspond to image details are preserved. Furthermore, if
the signal-adaptive filter has to share the benefits of the signal-dependent weighting factor (5)
as local signal-to-noise ratio measure as well as of the factor (6) as local texture indicator, the
following modified weighting factor 8(k,!) is proposed:

Bk, 1y = (1 = 0)Bk, 1) + 1B4eq(k, 1) (7)

where 0 < 7 < 1. By selecting n = 0, then 8(k,!{) = 8(k,!) and the segmentation information
provided by the image segmentation algorithm is discarded. if n = 1, 8(k,1) = F,00(k,{) and the
local SNR information is ignored. Otherwise, both information sources are taken into account.

3. EXPERIMENTAL RESULTS

The performance of the modified signal-adaptive ML filter that utilizes segmentation infor-
mation provided by the Lz LVQ prior to filtering process is tested both on envelope-detected US
B-mode images as well as on displayed images. Due to lack of space, only the results obtained
for simulated envelope-detected US B-mode images will be described in this paper. Figure 1
shows an homogeneous tissue of size 4 cmm X 4 cm with a lesion in the middle of diameter 2 cm.
The amplitude of the reflections in the iesion is 5 dB stronger than the reflection strength in the
background. Its resolution is 6 bits/pixel.

A Learning Vector Quantizer based on the L, mean has been created using 49 neurons at
the first level corresponding to input patterns taken from a block of 7x7 pixels. The second
level consists of 2 to 8 neurons corresponding to the output classes. A 7x7 window scans the
image in a random manner to feed the network with input training patterns. During the recail
phase, the 7X7 window scans the entire image in order to classify each pixel into one of p-
many (p = 2,...,8) classes. A parametric image is created containing the class membership of
each pixel. In our case, two output classes have been used representing background and lesion
respectively,

Next signal-adaptive filtering is combined with the ability of the L, IVQ to segment ultra-
sonic images in classes representing various tissue and lesion characteristics. The result of the
overall filtering process using the modified signal-adaptive ML filter is presented in Figure 2.
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Parameter 7 has been equal to (.5 in (7). By comparing Figures 1 and 2, it can be seeq that

the proposed modification aids the hlter in preserving better the edge information as wel]

a3

acknowledging areas of the image containing valuable information that should not be filtered
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Figure 1. Simulation of an homogencons piece of  Figure 2. Results obtained by using seg-

tissue with a circular lesion 1n the mentation in conjunction with
middle. filtering.



