FRONTAL FACE DETECTION USING SUPPORT VECTOR MACHINES AND
BACK-PROPAGATION NEURAL NETWORKS

C. Kotropoulos

N. Bassiou

T. Kosmidis and I Pitas

Department of Informatics, Aristotle University of Thessaloniki
Box 451, Thessaloniki 540 06, Greece
costas@zeus.csd.auth.gr

ABSTRACT

Face detection is a key problem in building automated sys-
tems that perform face recognition/verification and model-
based image coding. Two algorithms for face detection that
employ either support vector machines or back-propagation
feed-forward neural networks are described, and their per-
formance is tested on the same frontal face database using
the false acceptance and false rejection rates as quantitative
figures of merit. The aforementioned algorithms can replace
the explicitly-defined knowledge for facial regions and fa-
cial features in mosaic-based face detection algorithms.

Keywords : Face detection, support vector machines, back-
propagation neural networks, bootstrapping, horizontal/verti-
cal profiles

1. INTRODUCTION

Face detection has been an active research topic in com-
puter vision for more than two decades. Many approaches
have been proposed for face detection in still images that
are based either on texture, depth, shape and color informa-
tion or a combination of them. A comprehensive survey on
face detection methods can be found in [1]. A probabilistic
method based on density estimation in a high dimensional
space using an eigenspace decomposition is proposed in [2].
A closely related work is the example-based approach in
[3] for locating vertically oriented and unoccluded frontal
face views at different scales by using a number of Gaus-
sian clusters to model the distributions of face and non-face
patterns. A mixture of linear subspaces has been used to
model the latter distributions in [4] where a mixture of fac-
tor analyzers is employed to detect faces with wide varia-
tions. For the detection of upright, frontal views of faces
in grayscale images, a neural network-based algorithm that
applies one or more neural networks directly to portions of
the input image and arbitrates their results is presented in
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[5]. This approach recognize both separate facial features
and pairs of them, after a preprocessing step is applied in
the input images. For frontal-view face detection, Pantic
and Rothkrantz [18] analyze the vertical and horizontal his-
tograms of the image and apply an algorithm based on HSV
color model, which relative to the relative RGB model [19],
in order to determine the head’s vertical and horizontal outer
boundaries and the contour of the face respectively. For
profile-view images, a profile detection algorithm represent-
ing a spatial approach to sampling the profile contour from a
thresholded image is used [17]. The application of Support
Vector Machines (SVM) in frontal face detection in images
is studied in [6, 7].

In this paper we build on the face detection algorithm
proposed in [8] that is based on multiresolution images (also
known as mosaic images). The algorithm attempts to detect
a facial region at a coarse resolution and subsequently to
validate the outcome by detecting facial features at the next
resolution by employing a hierarchical knowledge-based pat-
tern recognition system. A variant of this method has been
proposed in [9] that allows for rectangular cells instead of
square cells and provides estimates of the cell dimensions
and the offsets so that the mosaic model fits the face image
of a person by preprocessing the horizontal and the verti-
cal profile of the image. The original algorithm [8] is based
on images of reduced resolution that attempt to capture the
macroscopic features of the human face. It is assumed that
there is a resolution level where the main part of the face oc-
cupies an area of about 4 x 4 cells having as origin the cell
marked by “X”. Accordingly, a mosaic image, the so called
quartet image is created for this resolution level. The grey
level of each cell is equal to the average value of the grey
levels of all pixels included in the cell. An abstract model
for the face at the resolution level of the quartet image is de-
picted in Figure 1 where we denote by n and m the vertical
and the horizontal quartet cell dimensions, respectively. We
propose to replace the “hardwired” rules for the properties
of either the image regions or the facial features by employ-
ing a general purpose pattern recognition algorithm to dis-
criminate among face and non-face patterns. Such patterns
are created by ordering lexicographically the grey levels of
the quartet image cells that fall inside a window scanning
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Fig. 1. Abstract face model at the quartet image.

the quartet image. Alternatively, one may use the horizon-
tal and vertical image profiles in order to extract a bounding
box for the face region, as has been demonstrated in [9]. The
horizontal profile of the image is obtained by averaging all
pixel intensities in each image column. Similarly, the ver-
tical profile of the image is obtained by averaging all pixel
intensities in each image row. Figure 2 depicts a typical hor-
izontal and vertical image profile from the M2VTS database
[10]. Instead of processing the extrema of the aforemen-
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Fig. 2. (a) Horizontal profile. (b) Vertical profile.

tioned profiles and defining rules that assign them to facial
features, we propose to create patterns by scanning the hori-
zontal and the vertical image profile with a running window.

Two supervised pattern recognition algorithms are tested
in this paper. First, a support vector machine (SVM) is
trained to separate face and non-face patterns extracted from
the quartet image. Second, an ensemble of feed-forward
neural networks trained by the back-propagation algorithm
processes the horizontal and the vertical profile aiming at
separating patterns that fall in the interval between the cheeks
from the remaining patterns.Similarly another ensemble of
feed-forward neural networks processes the vertical profile
aiming at separating between the eyebrows and the chin
from others.

The outline of the paper is as follows. The SVM face
detection algorithm is described in Section 2. The back-
propagation neural network approach is presented in Sec-
tion 3. Experimental results are reported in Section 4 and
conclusions are drawn in Section 5.

2. SUPPORT VECTOR MACHINE APPROACH

A two-dimensional (2-D) rectangular window is defined that
consists of 5 cells in horizontal and 6 cells in vertical dimen-

sion. The window scans the quartet image whose cell inten-
sities have been normalized to the interval [0, 1]. Between
two successive movements, the windows are half overlap-
ping. By moving the window over the quartet image, sev-
eral 30-dimensional patterns are obtained that enable the
description of faces appearing at different locations in the
image. By varying the cell size, we enable the description
of faces at different scales. To avoid the manual assignment
of a class label to each feature vector, an empirical approach
is used that exploits the face detection outcome provided by
the method in [9]. Let us consider the coordinates of the up-
per left pixel in the detected rectangular face image region
and its area. For each instance of the 2-D running window
on the quartet image, we project the coordinates of the up-
per left cell at the resolution level of the original image and
we estimate the area of the overlap between the 2-D run-
ning window and the detected face region. If the area of
the overlap exceeds the 88% of the area of the detected face
region, the corresponding feature vector is assigned to face
patterns.

Let x;, ¢ = 1,2,...,1 denote the ¢-th training pattern
and t; the class label assigned to it that takes the values +1,
t = (ti,t,...,4;)T. In order to deal with this non-linearly
separable case, we have to determine the decision function

y = f(x) = sign(w!x + b) @)

where w = (wy, wa, ..., w;) is a vector containing the weights
that are to be estimated. To determine these weights, we
built a SVM [14, 11] to solve the following quadratic pro-
gramming problem with linear equality and inequality con-
straints

!
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where k, C are control parameters that penalize the viola-
tions of the linearly separable constraints after the introduc-
tion of slack variables & = (&1, &, ...,&)T [12].

In order to solve the problem we introduce Lagrange
multipliers. For each inequality constraint there is a La-
grange multiplier which expresses the change rate of the
objective function subject to the changes in the respective
constraint function. We construct the Lagrangian function
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where A = (A1, A2, ..., Ni), ¥ = (71,72, ..., Y1) are the La-
grange multipliers of the first and second constraint function
respectively.

The minimum w* which is the solution to the problem
must be a stationary point of the above function, thus the
following relations must hold [12]:
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According to the Wolfe dual theorem stating that if z* solves
a convex primal problem and the objective and constraint
functions are differentiable, then z*, A* solve the dual prob-
lem of the Lagrange function subject to the constraints that
its derivative is 0 and the Lagrange multipliers are greater
or equal to 0. Furthermore, the minimum primal and max-
imum dual function values are equal [12]. As a result the
original minimization problem can be substituted by the fol-
lowing:
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From the third constraint of Eq. 9 we conclude that
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The substitution of Eq. 10 and of the the first constraint of
Eq. 9 into the objective function of Eq. 8 yields the so-called
soft margin hyperplane [6]:
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where 1 is (I x 1) vector of ones, 0 is (I x 1) vector of
zeros and D is an [ x [ matrix whose ij-element is given by
D;j = t;t; (x]'x;). The decision function implemented by
the SVM is:
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where b* = t; — (w*)T x;, for any support vector x;, i.e.,
a pattern whose the associated Lagrange multiplier satisfies
0 < \; < C and w* is given by:

l
* } : *
W = >‘z tiXi
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If the input patterns are mapped to a higher dimensional
feature space through some non-linear mapping, the inner
products in the feature space can be computed by a positive
definite kernel function K (x, x;) [14]. To implement the
above described algorithm, the SV M"9" T oolbox [13] has
been used.

To model efficiently the non-face class in the training
phase, we have used bootstrapping, as is proposed in [3].
For non-face patterns, any instance of the window in the
background or in any other image not containing a face can
constitute a non-face example. However, all these non-face
patterns are not equally useful in modeling the non-face dis-
tribution. We used bootstrapping in order to select the non-
face patterns that are close to face class boundaries [3, 6, 5].
That is, initially, the system is trained with a small number
of face and non-face patterns and then it is tested on un-
known images. The number of non-face patterns that are
falsely detected as faces are inserted into the training set as
negative examples.

(14)

3. NEURAL NETWORK APPROACH

An ensemble of neural networks N; is created where each
network is fed with patterns of the form

(=1, 21(n; i), 22 (05 0), ..., w2nssr (5 0)) "
,xi(n), ...,
(15)
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for several randomly selected instances n of either the im-
age profile of the same person or instances of images pro-
files of other persons from the training set. This means
that for each input of the neural network we use different
weight matrices which denote a different neural network.
On Eq. (15), 24(n) denotes the g-th element of the n-th im-
age profile. Each neural network has the topology depicted
in Fig. 3, i.e., it is a feed-forward fully connected network.
It is trained with the classical back-propagation algorithm
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Fig. 3. Topology of the neural network employed.

[15]. Let m = 0, 1,2 denote the layers of the neural net-
work shown in Fig. 3. Let also w,(cT) (n; 1) be the synaptic
weight of neuron & in layer m that is fed from neuron 7 in
layer m — 1. For j = 0, we have yémil)(n; i) = —1 and
w,ggn) (n; i) = 9,(€m) (n; i), where 9,(€m) (n; 9) is the threshold
applied to neuron k in layer m. The net internal activity

level v,(cm) (n; ) of neuron k in layer m is given by:
2M+1
o) = S w0y V) a6
J=0
with

yO(ny i) =;(n; i), j=12,...2M+1 (7
The output signal of neuron & in layer m is:

1
1+ exp (—ﬂ v,(cm) (n; z))

yi™ (n; i) = (18)

where § = 1.5 or 2.5 for horizontal and vertical profiles,
respectively. For the output neuron processing the pattern
x(n; i), we define o(n; i) = y?) (n; 7). The error signal at
the i-th element of the image profile is e(n; i) = t(n; i) —
o(n; i), where t(n; ) is the desired response for the i-th
element. The synaptic weights of the network in layer m
are updated according to the generalized delta rule:

wi (n + 15 ) = w™ (n; 1) + a fwl” (n; i)

—wf (=15 0] + o™ (s D" (s i) (19)

where « is the momentum constant, 7 is the learning rate,
and §’s are the local gradients. For output neurons (i.e.,
k = 1and m = 2) we have:

63 (n; i) = e (n; i) o(n; 7) [1 — o(n; )] (20)
while for neuron & in hidden layer m:
o i) =y ) [1- g™ s i)

-Z(Sémﬂ)(n; i) wl()r;+1)(n; i). (21
I3

Both horizontal and vertical image profiles undergo a cer-
tain preprocessing before being fed to the network. First
of all, they are smoothed by applying a running maximum
filter of length 5 twice, so that the maxima become more
prominent. Then, for each pattern x(n; i) the desired re-
sponse or ground truth, ¢(n; i) € {1, 0}, is coded consid-
ering whether the ¢-th element (i.e., a row index or column
index) belongs to a face region or not. We consider as face
region the area from the chin to the forehead in the vertical
direction, and from the left to the right ear in the horizon-
tal position. It is seen that the desired signal is a square
wave signal with abrupt transitions. A branch of a Gaussian
kernel is fit in each transition region so that more smooth
transitions are provided to the neural network. A typical de-
sired signal is depicted in Fig 4. The synaptic weights have
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Fig. 4. Example of a desired response when profiles are
being preprocessed.

been initialized randomly in the interval [—1.5,1.5]. The
constants a,n are set to 0.9 each. As stopping criterion,



we have used the condition the average mean squared error
between the output of each neural network and the desired
target becomes less than 0.07.

Moreover, we can augment the image profiles extracted
from the frontal face images of the database with “synthetic”
ones that are produced by adding Gaussian noise of zero
mean and unit variance to the original image profiles.

4. EXPERIMENTAL RESULTS

The proposed algorithms have been applied to the European
ACTS project M2VTS database [10]. The database includes
the video-sequences of 37 different persons in four different
shots. A training set is built from the frontal face images
of the 37 persons in three shots. The algorithms are trained
on this set. Frontal face images of the 37 persons from the
fourth shot are used as test images. Rotations between the
four available shots by leaving one shot out are also tested.

Two quantitative figures of merit have been used in the
assessment of the performance of each algorithm namely
the false acceptance rate (FAR) and the false rejection rate
(FRR) during the test phase. The false acceptance rate is
the ratio of non-face examples that have been wrongly clas-
sified as faces, while the false rejection rate is the ratio of
face examples that have been failed to be detected, i.e., they
have been rejected as non-faces. Receiver operating char-
acteristic (ROC) curves (i.e., plots of FRR versus FAR) for
a detection algorithm are provided whenever a tunable pa-
rameter (e.g., a threshold) is employed in the decision taking
procedure.

4.1. SVM-based face detection

The pattern extraction algorithm yields roughly 1 — 10 face
patterns when each frontal face image is processed at sev-
eral quartet cell resolutions. Accordingly, for each shot 200
face patterns result on average. When three shots are con-
sidered, a training set of 600 face patterns is formed. The
following kernels have been employed during the training
phase:

e Linear with C' = 1000;

e Polynomial K (x,%) = (sxTv¢ + ¢)? with ¢ = 1,
d=3,4,5and 10;

e Radial Basis Function (RBF) K (x, ¥) = exp(—7||x—
¥||?) with v = 1 and 5;

e Sigmoidal K (x, %) = tanh(s x74 + ¢) withc = 1
and s = 0.005.

Table 1 summarizes the FAR and FRR obtained for all the
kernels and the four combinations of test and training sets.
Bootstrapping techniques are employed in SVMs with lin-
ear and polynomial kernel functions with d = 5. The cor-
responding rates obtained with and without bootstrapping

Table 1. False acceptance and false rejection rates for sev-
eral kernels and test sets.

Test Kernel FA FR
Set % %
Linear 1.11 | 6.66
Polynomial (d=3) 1.11 | 4.44
4 Polynomial (d=5) 0 0
RBF (y=1) 0 0
RBF (7=5) 111 |0
Sigmoidal (s = 0.005) | 1.11 | 2.22
Linear 3.62 | 1.21
Polynomial (d=3) 3.62 | 1.21
3 Polynomial (d=5) 3.61 | 581
RBF (v=1) 3.62 | 2.40
RBF (y=5) 3.61 | 3.61
Sigmoidal (s = 0.005) | 3.61 | 3.61
Linear 5 5
Polynomial (d=3) 3 8
2 Polynomial (d=5) 3 8
RBF (y=1) 1 5
RBF (7=5) 2 0
Sigmoidal (s = 0.005) | 2 0
Linear 1.88 | 1.88
Polynomial (d=3) 1.88 | 1.88
1 Polynomial (d=5) 1.88 | 1.88
RBF (7=1) 3.77 | 1.88
RBF (v=5) 2.83 | 0.94
Sigmoidal (s = 0.005) | 2.83 | 0.94

are tabulated in Table 2.  Table 3 illustrates the number
of support vector obtained out of 600 feature vectors for
the four training/test set combinations for several kernels
and the number of iterations during each training. Table 4
summarizes the number of support vectors with and with-
out bootstrapping for the linear and polynomial kernel, with
d = 5, functions.

Table 2. False acceptance and false rejection rates (in %)
achieved by linear SVMs with and without bootstrapping.

Test Without With
Set || Bootstrapping || Bootstrapping

FA | FR FA | FR

2 50 | 5.0 1.0 | 40

1 1.88 | 1.88 0.0 | 2.0




Table 3. Number of support vectors and of iterations for
several kernels and test sets.

Test Kernel Number of | Number of
Set Support Iterations
Vectors
Linear 30 2274
Polynomial (d=3) 36 1988
4 Polynomial (d=5) 36 2171
RBF (v=1) 52 447
RBF (v=5) 192 216
Sigmoidal (s = 0.005) 71 61
Linear 26 5670
Polynomial (d=3) 35 1059
3 Polynomial (d=5) 33 1286
RBF (v=1) 45 225
RBF (v=5) 189 209
Sigmoidal (s = 0.005) 42 73
Linear 29 2474
Polynomial (d=3) 36 2492
2 Polynomial (d=5) 37 2082
RBF (v=1) 49 533
RBF (v=5) 179 251
Sigmoidal (s = 0.005) 74 91
Linear 29 2570
Polynomial (d=3) 37 204
1 Polynomial (d=5) 38 1266
RBF (v=1) 52 341
RBF (v=5) 186 252
Sigmoidal (s = 0.005) 70 105

4.2. Back-propagation neural network-based face detec-
tion

Experimental results are reported when the fourth shot has
been used as test set. The neural network output is a sig-
nal taking values in the interval [0, 1]. The output is first
smoothed by applying a running maximum filter of length
5, twice. To quantize the output as either O or 1 a thresh-
old T is employed, so that when the output is greater than
the threshold, the binary output is 1 (i.e., face pattern) and
zero otherwise. Tests have been performed in the range
0.3 < T < 0.9. In this case, the FAR and FRR values
depend on the implicit parameter 7. Accordingly, we may
create ROC curves. The ROC curve when face detection
is performed on the horizontal profiles only is depicted in
Fig. 5. The corresponding curve, when the vertical profiles
are only used, is shown in Fig. 6. The equal error rate
(EER) is 5.01% for the ROC of Fig. 5 and 5.95% for the
ROC of Fig. 6. Decisions taken on either the horizontal
or the vertical profile independently can be combined us-
ing “AND” and “OR” rules. The false acceptance and false

Table 4. Number of support vectors acquired by linear and
polynomial SVMs with and without bootstrapping.

Test Without With
Set Bootstrapping Bootstrapping
Linear | Polynomial || Linear | Polynomial
4 30 36 35 38
3 26 33 36 36
2 29 38 30 39
1 29 39 36 46

Total FA-FR of horizontal profiles

T T T T T T

03

0.35

Fig. 5. Receiver Operating Characteristic curve when the
horizontal image profiles are only considered.

rejection rates are then given by [16]

FAanD faifas (22)
FRanp = fri+ fro—frifr (23)
FAor = fa1+ faz — faifas (24)
FRor = frifrs (25)

where fa; and fr; are the FAR and FRR measured on the
horizontal profile and fas and frs are the FAR and FRR
measured on the vertical. The ROC curves are depicted in
Figs. 7- 8, with EER 1.71% and 5.01% respectivly. Com-
paring the results with the ones of the previous method we
conclude in Tables 5.

Table 5. Comparative FA-FR results of the two methods.
Methods FA % | FR %
SVM | Polynomial (d=3) 1.11 | 444
Sigmoidal (s=0.005) | 1.11 2.22
N.A. | AND combination 1.38 3.33
OR combination 1.16 | 0.19
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Fig. 6. Receiver Operating Characteristic curve when the
vertical image profiles are only considered.

5. CONCLUSIONS

In this paper, two methods for detecting faces in frontal
views have been described and their performance has been
thoroughly measured with respect to the false acceptance
and false rejection rates. These techniques are example-
based and offer great flexibility in contrast to the knowledge-
based approaches. They can replace the explicitly-defined
knowledge for facial regions and facial features in mosaic-
based face detection algorithms.
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