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ABSTRACT

Elastic graph matching based on multiscale morpho-
logical dilation-erosion was proved very efficient in
terms of its receiver operating characteristic curve
for frontal face authentication. In previous works,
we dealt with either running (i.e., space-recursive)
algorithms or scale-recursive ones. In this paper,
we study the computational complexity of algo-
rithms that combine both space and scale recur-
sions. We derive analytically space and scale recur-
sive algorithms for two separable structuring func-
tions, namely the flat and the circular paraboloid.
We demonstrate that for a flat structuring function
such a combined scheme requires only three compar-
isons per pixel and scale increment.

1 INTRODUCTION

Face authentication is one of the most popular bio-
metric verification techniques [1]. Over the last
twenty years, numerous algorithms have been pro-
posed for face recognition [2]. A powerful face recog-
nition technique, whose origin can be traced back in
the neural network community, is the dynamic link
architecture (DLA) [3]. A simplified implementa-
tion of dynamic link architecture, the so-called elas-
tic graph matching (EGM), is often preferred for
locating objects in a scene with a known reference
[4]. EGM algorithms that employ either multiscale
dilation-erosions [5] followed by linear projections of
the feature vectors at the graph nodes or morpholog-
ical signal decomposition [6] were proposed in [7, 8].

In the previous works [7, 8], our prime concern was
to demonstrate the authentication capabilities of the
variants of EGM that were based on mathematical
morphology operations in terms of their receiver op-
erating characteristic curves (i.e., their false accep-
tance and false rejection rates). Although running
algorithms for multiscale morphology with a flat or
a circular paraboloid structuring function as well as a

scale-recursive algorithm for a flat structuring func-
tion were developed and tested in [7], the computa-
tional complexity of these algorithms is still high. In
this paper, we develop algorithms that exploit both
recursion types in order to reduce further the num-
ber of comparisons needed for the computation of
the feature vectors at the elastic graph nodes. More
specifically, we derive analytically space and scale
recursive algorithms for two separable structuring
functions, the flat and the circular paraboloid. We
demonstrate that for a flat structuring function such
a combined scheme requires only three comparisons
per pixel and scale increment. Such a computational
complexity reduction is beneficial to low-power mul-
tiscale morphological co-processors for mobile face
authentication devices [9, 10].

The outline of the paper is as follows. Section 2
describes the running and scale-recursive approaches
for multiscale mathematical morphology operations.
A scale-recursive algorithm for grayscale dilation
with a circular paraboloid structuring function is de-
veloped for completeness. Analytical results for the
proposed combined approach are presented in Sec-
tion 3. A discussion on the benefits of the algorithms
developed in this paper is made in Section 4. Exper-
imental results are presented in Section 5.

2 RUNNING AND SCALE-RECURSIVE
ALGORITHMS FOR MULTISCALE
MATHEMATICAL MORPHOLOGY

An alternative to linear techniques used for generat-
ing an information pyramid is the scale-space mor-
phological techniques. Multiscale dilation-erosion [5]
could substitute the Gabor wavelet transform usu-
ally employed to extract local features at a given im-
age pixel. Among the reasons that justify such a
substitution is that dilations and erosions deal with
the local extrema in an image. Therefore, they are
well-suited for facial feature representation, because



key facial features are associated to either local max-
ima (e.g. the nose tip) or local minima (e.g. eye-
brows/eyes, nostrils, endpoints of lips etc.)

The multiscale morphological dilation-erosion is
based on the two fundamental operations of grayscale
morphology, namely the dilation and the erosion.
Let R and Z be the set of real and integer num-
bers, respectively. Let us denote by boldface letters
two-dimensional (2-D) pixel coordinates, i.e. x =
(z1,22). Given an image f(x) : D C Z? — R and a
structuring function g(x) : G C Z2 — R, the dilation
of the image f(x) by g(x) and its complementary
operation, the erosion, are denoted by (f @ g)(x)
and (f © g)(x), respectively. Their definition can be
found in [11]. If the structuring function is chosen
to be scale-dependent, that is g,(z) = |o|g(|o|~! z)
Vz € G: ||z|| < |o|, the morphological operations be-
come scale-dependent as well. In this paper, we deal
with the flat structuring function [11]

9o (2) =0 (1)
and the circular paraboloid [12]

g0 () = o A @)

where ||z|| < |o].
The multiscale dilation-erosion of the image f(x)
by go(x) is defined as follows [5]:

(f®go)(x) ifo>0
(f*95)(x) = ¢ f(x) ifo=0 (3)
(f©g0))(x) ifo <0,

The outputs of multiscale dilation-erosion for several
scales 0 = —0yy,...,0, form a local feature vector.
A common choice for frontal face authentication ex-
periments is o, = 9 [7].

It has been found that the choice of the structur-
ing function affects the authentication capability of
the proposed technique to a margin of +0.5% with
respect to the equal error rate, but it does affect the
time required to compute the dilation and erosion
[7]. The 2-D flat structuring function and the circu-
lar paraboloid one are separable, because they can

be decomposed in terms of the one-dimensional (1-

D) structuring function ggl)(zi), 1=1,2,ie.,

9o (21, 22) = gi (21) + i (2). (4)

Our interest will be confined to separable structuring
functions. Two classes of algorithms are considered,
namely the running (i.e., space-recursive) algorithms
and the scale-recursive ones. Throughout the pa-
per, we study the computation of grayscale dilation.
However, the results can easily be extended to the
computation of grayscale erosion.

2.1 Running algorithms

For a flat structuring function, dilations can be effi-
ciently computed by applying running max calcula-
tions (e.g., the MAXLINE algorithm [13]) in which
the computation of (f @ g,)(z1,x2) exploits the pre-
vious outcome (f ® g,)(z1 — 1,23). Other running
max algorithms are described in [14, 15]. Similar
running min calculations can be exploited in the ef-
ficient computation of erosions.

Let us consider next a 2-D circular paraboloid
structuring function. It can easily be seen that [12]

(f ® go)(@1,m2) = max (y(or = 21,22) + 9 (1))
21€Gs
(5)

y(71,22) = max (f(331,332 —22) + gc(rl)(z2)) (6)
Z2€g¢(rl)

where Q((,l), 1 = 1,2 are the projections of G on the
two axes. Following similar lines as in [12], let us
suppose that the maximum occurs in (6) for zo = &.
Then

£+1
Y(z1, 22+1) = Jnax (f($1,332 +1—2)+ 9571)(2’2)) :
2o=—0
(7)
Eq. 7 is the basis of a running separable imple-
mentation of grayscale dilation with a 2-D circular
paraboloid structuring function.

2.2 Scale-recursive algorithms

For a flat structuring function, scale-recursive max
computations are based on the observation that

(f & grs) (@1, 22) = max{(f & g1, 22),

+ 21, %2 + 22)},
(21722)%2§(0+1){f(x1 21, T2 22)}

max{ f (a1 :I:(U+1),a:2:|:(a+1))}} 8)

where the set AG(o + 1) = {(21,22) € 2% : (2] +
B) > 0%, (F+23) < (0 +1)2 |a| <o, 2| <o}
possesses a symmetry and can easily be evaluated
prior to the computation of dilations.

Next, we derive analytically a scale-recursive al-
gorithm for the grayscale dilation when a circular
paraboloid structuring function (2) is employed. For

the 1-D paraboloid, we have

gr+1(z) = =500, <o (9)
ga+1(z) > gcr(z)a |Z|SU (10)

Let us explicitly indicate the scale parameter that
corresponds to the computation of vy(x1,z2) defined
by (6) with the addition of a subscript. It can



easily be shown that a recursive computation of
Yo+1(z1,22) is given by

You1(T1,T2) = max( max {f(:nl,a:Q —29) +
|22|<o

+Lga_(2;2)} max {f(w17$2 _Z2)+

o+1 T o<|z2)<(04+1)

Fe()} ). (1)

Let us suppose that the maximum in v, (x1,x2) oc-
curs for zo = £ € [—0,0]. That is,

f(x1,22—8)+95(§) > f(z1, 72— 22) 4095 (22), 22| <o
(12)
It can be proven that
g
ma; T1,T9 —22) + —— g5 (2 =
|22|§}|(5|{f( 1,T2 — 22) 517 (22)}
1
Yo (T1,22) — U—Hga(f)- (13)
Accordingly,
Yo1(21,72) = max ([ (21,72) = — 90 (€)]
’ ’ oc+1 ’
a
e, (I @me = 20 + g 00()})- (049

U(l€l, o+1]

3 COMBINED APPROACH FOR SEPA-
RABLE STRUCTURING FUNCTIONS

In this section, we derive analytically combined space
and scale recursive algorithms for grayscale dilation.
When a flat structuring function is used, then the
max computations can be rearranged as follows:

(f @ gor1)(z1,72) = ‘z{{lgﬁl{f(l“l —21,%y — 22)}
lzo|<o+1

= ma ma; Ty —21,r2—1—2z
|21|§;(+1{|22|§X0{f( 1 1,02 2)}7

max { f(z1 — 21,20 +1— 2'2)}}

|22|<o

(f® 90
(f® 90
(f & go)(m + 1,25 +1) }. (15)

Subsequently, we develop a space and scale recur-
sive algorithm for a grayscale dilation, when a cir-
cular paraboloid structuring function is employed.

Eq. (11) can be rewritten as

Yotr1(x1,22) = max( max {f(.’L'l,ZUQ +1—29)+

|22|<o

ag
- Yo _]' b ) _]‘_
9 (20— 1)} lg@;{f(ml To z) +

o
?90(22 + 1)}) (16)
It can be shown that

max {f(:m,CUQ +1—22)+ ULQJ('ZQ - 1)} =

[22|<o +1
1
‘gfgr{f(ﬁfl,xz +1—22) + go(22) — o1l
90 (22) +1— 225]}. (17)

Let us suppose that the maximum in v, (1,22 + 1)
occurs for z; = & € [—o,0]. That is, for |23| < o,
the following inequality holds:

[, 22 +1=861)+9,(&1) > flar, 2+ 1-22) + g0 (22)-

(18)
Using (18), the maximum in (17) can be computed
by

o
1_ —0s _1 =
@figxa{f(xl’w t1-2) 4 ee(e — 1))

max (o 1,2 + 1) = — <[00 (&) +1 - 2611,

o g
1— % gz —1)}).(19
s {F(@r e 1= 2) + —2 g0 (22 = 1)}).19)
Similarly, we obtain
11— 7 (1)) =
‘g%)i{f(CUl:xQ z2) + 17 (22 +1)}
1
a (@5 — 1 = 25) + go(22) — —— -
‘g‘gﬁfr{f(wl > 22) + go(22) 1
g0 (22) + 1+ 220]}. (20)

Let us suppose that the maximum in v, (1,22 — 1)
occurs for zo = & € [—0,0]. That is, for |z2| < o,
we have

flxr,m2—=1-8)+9,(8) > f(z1,02—1—22)+ g5 (22)-

(21)
Then, (20) can be computed recursively using
1 7 4 1)) =
max {f (a1, 2 22) + ——79-(2 + 1)}

max (7o 1,2 = 1) = — 10 (€) + 1+ 265,

§2—1 o
oy —1— 7 4 1 ) 29
ZIanajcg{f(a:l T z2) + s+ 17 (22 +1)}).(22)
The combination of (16), (19), and (22) constitutes
the heart of a space and scale-recursive algorithm for
the computation of y(z1,z2).



4 DISCUSSION

As a basis of our discussion, we consider the fact
that the maximum of n numbers requires at most
2 log, n comparisons [13]. For all algorithms an up-
per bound on the number of comparisons can be esti-
mated and this bound is used as figure of merit. For
the flat structuring function, the discussion refers to
the computation of the grayscale dilation, whereas
for the circular paraboloid the discussion refers to the
computation of y(z1,z2). In this case, the grayscale
dilation is obtained by combining (5) and (6).

For a flat structuring function and for sufficiently
large o, the MAXLINE algorithm requires on aver-
age 3 comparisons to compute (f @ g,)(z1,z2), if the
probability density function of the gray level values
is uniform [13]. A straightforward computation of
the gray scale dilation would require 4 log, (20 + 1).

The straightforward computation of vy(z1,z — 2)
requires 2log,(20 + 3) comparisons. The number
of comparisons needed to compute (7) is roughly
2 log, (€ + 0 + 2) which is less than that required
for the straightforward computation of y(z1, z2 + 1),
iféE<o—1.

A rough estimate of the number of comparisons
needed to compute (f ® got1)(r1,22) in (8) is
2log, (80 +9), which is always less than that required
for the straightforward computation, i.e., 4log, (20 +
Eq. (14) requires 2 log, (20 — 2£ 4+ 5) comparisons.
The number of comparisons in a scale-recursive com-
putation is less than that required for the compu-
tation of 7, (z1,22 + 1) by a running algorithm, if
€| > [§ + 1]. Moreover, the number of compar-
isons in (14) is less than the number of 21og, (20 + 3)
comparisons required by the straightforward compu-
tation, if |¢| > 1.

For a flat structuring function, (15) demonstrates
that only 3 comparisons are needed per scale incre-
ment, when both space and scale recursions are ex-
ploited. There is a clear reduction in computations
with respect to scale recursive algorithms. Moreover,
the number of comparisons is now ezact and not an
average one.

From the inspection of the recursions (19) and (22)
becomes evident that the space and scale recursive
computation of v,41(z1,22) requires 2log(20 — & +
& + 2) comparisons. This number is less than the
number of 2log,(20 + 3) comparisons required by
the straightforward computation, if & — & > 1.

5 EXPERIMENTAL RESULTS

We implemented all the proposed algorithms for
grayscale dilation and erosion, when a flat structur-

ing function is being used. We are interested in com-
paring the time needed for the computation of the
multiscale dilation-erosion for ¢ = —9,...,9 that is
used in the frontal face verification algorithm de-
scribed in [7], when these algorithms are being ex-
ploited. Implementations of grayscale dilation and
erosion using the scaled hemisphere and the circu-
lar paraboloid (either separable or running) were in-
cluded in our study as well. Figure 1 depicts the time
needed to compute the multiscale dilation-erosion for
typical facial images of dimensions 286 x 350 pixels
from the M2VTS database [16]. A set of 37, one per
person, frontal faces was used. The computations
were performed on a SUN UltralO workstation with
UltraSPARC-ITi processor at 300 MHz and 256 MB
RAM. The average computation time and the stan-
dard deviation of the computation time over the set
of the 37 frontal facial images for each implementa-
tion are summarized in Table 1. As a result, when

Table 1: Average and standard deviation of the com-
putation time (in sec) for each implementation of
multiscale dilation-erosion.

Structuring | Algorithm | Average | Standard
function Time deviation
Naive 9.311 0.168
Running 2.898 0.101
Flat Scale- 1.864 0.035
recursive
Space & | 0.219 0.007
scale re-
cursive
Scaled- Straight- | 45.584 0.181
hemisphere | forward
Circular Separable | 3.116 0.073
paraboloid
Running | 3.068 0.035

both space and scale recursions are applied to mul-
tiscale dilation-erosion, the average time for a single
frontal face verification drops from 5.218 sec, mea-
sured with scale recursive mathematical morphology
operations, to 3.565 sec. The latter average time
refers to the graph matching algorithm.
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Figure 1: Computation time for multiscale dilation-erosion for 37, one per person, frontal facial images from
the M2VTS database for (a) flat, (b) scaled hemisphere, and (c) circular paraboloid structuring functions.
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