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Abstract
The extension of single-channel nonlinear fillcrs whose
cutpnt 15 a lincar combination of Lhe order stalistics of
the inpul samples to the muoliichannel case 1s prosented
in this paper. The subordering principle of marginal
ordering (M-ordering) s used lor minllivariale ddataj or-
deting. A unified framework for a discrete ealclla-
tion of the momenis of the bivanate order stalistics
reuired for the design of the multichannel marginal
l-fitiers is outlined. The derivation of a bivariale dis-
(rbution, namely the Laplacian (bi-cxponential) dis-
trilmtion which belangs to Morgensicrn’s lamaly is dis-
cussed. 1t 35 shown by simulations that the proposcd
nudbichannel T-fAbers perfonm heller thian olher multe-
chiannel nonliocar tees swelh as Cthe marginal macian
and Lhe vector median proposed clsewhere as well as
Lheir single-channel conuterparts.

1 Introduction

Multichannel one-dimensionad and two  diunen-
sional signals appear frequently in practice, dor ox-
ample in the cases volving muitiple sourees and
receivers, as 1 geophysics, nnderwaler aconslics,
miutltiple-antenna transimission systeimns as well as
in Lhe processing ol color images and sequences of
imsages. A multichanunel signal is defined as a vector
of components called channels which are generally
corrclated and characterized by their joinl proba-
bility density Tunction (pdf). If each signal cotnpo-
neni, is processed separately, Hus correlation s nol,
ulilized. Although transformation techniques sucl
as the Karlinnen- Loeve translonnalion can be used
first. Lo decorrelate the signal compouents v or-
der to apply single-channel signal processing tech-
nigues allerwards, a more natural way is Lo apply
mualtichannel signal processing techmques. |
Single-chaunel  nonlinear  fillering  techaiques
have exhibited a iromendous growil in the past
decade as alternatives of linear filteriog in prob-
lems thal cannol be elficiently solved by using lin-
ear techniques, e.g. in the case of non-Giaussian
or signal-dependent noise filtering [5]. A class of
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nonhnear Gllers that has foupd extensive applica-
Lions in digital signal and imiige processing are the
I-Bllers (sometimes also ecalled order statistic fil-
Lters) whose ondput s defined as a hnear combina-
tion of the order statistics of the mput sequence
(8, 12}, Recently, incrﬂ&u‘aing altention has been
given Lo nonlinear processing of vector-valued sig-

nals {10, L1, 13, i4]. |

1

The nain contribution of the paper is the de-
sign of nmimllichannel L-fillers based on marginal
ordering (M-ordering) using, the Mean-Squared-
Frreor (MSE)Y as fddelity eriterion. M-orderning im-
plics independent. data ordering in cach channel.
We assume that a ullichannel constant signal
is corrupled by additive white mudtivariate noise
which generally exhibits corpelalion between dif-
ferent. channels, 'T'he unconstramed miennzalion
ol the MBI s Crealed fiest. Stroctural constraints
such as unbiascdness and location-invariance are
also incorporated in the minimization procedure,
"The unconstrained [I]i[]illli?}l,l.i.t}ll 1s shhown that it
leadds Lo a global mininwim. The design procedure
involves woments of the,order stabistics of input
samples derived from the sape channel as well as
from dilferent, channels.  The theoretical frame-
work required Tor the computation of the above-
mentioned moments is outlined and a discrete al-
gorithum for their computation is derived based on
veclor gquaniization. In order Lo Lest the perfor-
mance of Lthe designed multichannel marginal 1.
fifters, long-tailed multivariate distributions are re-
quired. The derivation and design of such a distri-
bution, namely, the Laplacian (hi-exponential) dis-
iribuiion which belongs 1o Morgenstern’s Tannly in
the two-cliannel case is discussed. ‘The noise redue-
tion capability of the designed multichannel non-
lincar fillers is examined for hivariate distributions
ranging from Lhe short-ltailed to the Jong-tailed
ones. Fhe following bivarialg pdfs are considered:
aniform, joinl Gaussian, contaminaled Ganssian
and Laplacian distributions. . 1t is shown by sim-
alalions that the proposed multichannel L-filters
perform better than other niilichannel nonlnear
lilters such as the marginal median, the vector me-
dian proposed in [10] [E3] as well as Lheir single-
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chaunel counterparts.

The work presented i this paper extemnds previ-
ously reported work [I[l]—{llﬁ}, The outline of the
paper s as lollows. 'I'he basic concepts of multivari-
ale data ordering are reviewed in Scction 2. The
design of multichannel narginal L-filters is also e-
scribed in this section. I'lte calculation of the mo-
mnents of multivariate order statistics is Lrealed in

Section 3. The derivation of the bivariate Laplacian -

N + . - = = | - L] r
distribulion 1s outhned 1 Section 4. Sunulation ex-
amples are included and conclusions are drawn in

Section 5.

2 Multichannel L-filters
marginal data ordering

based on

The noiion of data ordertng cannol be extended

in a straightforward manner from the univariate

case Lo Lhe multivariate one. An excellent treal-
ment of thie multivariate dala ordering and the
outliers in multivariate data can be found in [7].
‘There are several ways Lo order mullivariale dala,
but none of them is unambiguous nor univer-
sally accepted. Specifically, the following four so-
called sub-ordering pringiples are discussed in [7]:
marginal ordering, partial ordering, conditional or-
dering and reduced ordering. In 1he sequel, we shall
confine ourselves to the definition of M-ordering.

Let xy,...,xy be a tandom sample of ¥ ob-
servations of a p-dimensional random vanable X
where x; = (:f:il,rig*.,q,;r:;p)iri The M-ordering
scheme orders ench of the vector coinponents inde-
pewdently yielding:

Ij{l}EIj{?}E"'E:Ij(h’} F=1,...,p (1)

|
e, the veclor-valued bbservations are ordered
along each ol the p-dimiensions (or channcls) in-
dependently. By definition, the (i,4a2,...,1,)-
marginal order statistic is the following (> 1) vee-
tor:

def T .
X(iy g2, 0p) = (-'El[i;]::ﬂ?E[ig]m .- '11:1!1[1',1})’ (2)

where i;, 1 <i <N, j=1,...,p

As mentioned before,: L-filters have been used
extensively as estimalors of location tn the single-
channel case. The following definition for the mul-
tichannel L-filter based on marginal ordering has
been given in [11]: ‘The output of a p-channcl
marginal L-filter of length N, y(k) = T[x(#)],
operaling on a sequencet of p-dimensional veclors
{x(k)} for N odd is given by:

N N
v (k) il Z ... Z Ail,---.ipx[fir----ﬂ-]“‘:) (})

i1 ip=1

where A; i, are (p x p) coellicient malrices

and the (i1, %2,...,%,)-marginal order statistics
have been formed by ranking the components

of the {p x 1) vector-valued observations x(k —
), . x(R), L x(k 4 v) independently along each
chaunel. By rearranging the terms appearing in
sutn (3), it can be shown that delinition (3) 1s cquiv-
alend, to :

P
y(k) =) A;%,(k) (1)

j=1

w]mr{:!'Aj are appropriate (p x N} coctlicient ma-
trices and x; (k) = (z;ny(k), ..., :r.'j{w](k)}T are the
(N x 1) vectors of Lhe order statistics along each
channel.,

Let ns suppose Lhat the observed p-diniensional
signal {x(k)} can be expressed as the snm of a
known p-dimensional constant signal s and a noise
vector sequence {n{k}] ol zero-mean vector hay-
ing the sanie dunensionality, i.e., x(k) = s + n{k).
The noise veclor n{k) = {(m(k),...,n, k)7 is a
p-dimensional vector of random variables charac-
terized by the joint pdf of its componentis which
are assumed Lo be correlated in Lhe general case,
In addition, we assume Lhat the noise vectors at
different Lime-msianis are independent, 1dentically
distributed (1.i.d.) and that at every time-instant
the signal s and Lhe noise veclor n{k) are uncorre-
laled. -

We shiall design the p-channel marginal L-{ilter
which operales on Lthe p-dimensional observed sig-
nal {x(k)} aud is the oplimal estimator of s by
using the MSE between s and the outpub of the
p-channel marginnl L filter as fidelity critenon.

Lei, _H_:f, [l = 1,...,p be (1 x N} row vectors
corresponding Lo Lhe rows of malrix Aj;.  Lel

;i = |’:[ﬁji?11 denote the correladion malnx of
the ordered mpul samples 1in channels 7 and 1. For
J = ¢ Ry 1 =, ..., p consists of moments of
the order statistics from a umvanale population.
IFor j # ¢, the elements of R, are moments of the
order statistics [romr a bivariate population. Let
also po= (Ele;in) Plzjel, - -, I‘:[Ij[N}]JI denole
the mean veclor of Lhe order statistics in channel
7. The MSE belween s and y(k) is given by:

.T'l -
p [ A,
Y T N LT . " T 5
£ = A Rpag) s : it, +s8's (h)
i=1 I
L By
wihere
T T ) T
ai) — ( Hig Ry o i ) (6)
i R,“ H,lg - n.”-, ]
X RY, Ry N { P
R, = ; _ (7)
T T ‘
_ nrlp REF I?'}}p )
. / T T y7
Ep — \ E] E‘E ) Ep ) (8}




In the sequel we shall treat firse the unconsgtrainaed
mimmization of the MSL and then we shall -
pose coustraits on Lhe output of the multichannel
marginal L-hilter.

Minimizing (8) over a5, j,i = 1,...,p is a
guadratic oplimization problem which hias a unigue
solution provided that the synunctric matrix It Pt
positive definite. Ouly the diagonal ‘:lllltll-l“‘](‘t“: of

R, arc by definition positive scinidefinite [4]. We
shall assume that I, 18 mdecd positive defintle.
Such an assumption has been verified i all simn-
lations performed 10 Section 5.

Lgnating the derivatives ol € with respect to ay;

: . i : :
with zero, Lo, 535~ =20 0, the following p sets of
1
equalions result;
R t‘{l‘l‘l} l"j‘-l ;I ?,t — ’ PRI F.’ (,_}]

which yield the optimal p-channel marginal L-filter
cocthicients:

HE” = alli.T]E
. Sy .
Aoy -;--n“] =2, p (101

The MMSE associated with the oplunal coellicignts
{10} 1s:
TE _ N
Emin = (I — &)515 , O = J“'P n-p ]!f’, “ 1)
The lact Lhal £ 15 adways nonnegative mmaphes Lhat
Emin = 0. Thercfore, 0 <A < | .
[n (10}, Lhe u:;-l:-lmm] coellicients depend on the
knowledge of the constant signal s, To additaon,

the joint probability densily function of Lhe con-
ponents of the inpul vector-valued signal x{(k) must,

he know in order to caleulate Ry ad g asis ana-
=

Iyzed 1o Section 3. In many practical applicatibns,
the constant signal s 15 nnkuown. Therefore, s st
be estimated at every Lime imstant & from the past
L-filter outpuls y{{}, I =k — |, & —2,.... Such an
estimate §(k) of s al time instant k is described in
aection 5. |
[n Lhe umivariate case, L-fillers are designed by
imposing local structural constraimts on the out-
put of the L-filter,  Two lypes of consbraints
iave been incorporated in the design of smgle-
channel L-filters [8, 12]: unbiasedness and location-
invariance. A multichannel marginal L-filter ix said
to be unbiased multichannel estinator of localion,
if Ely(£)] = s holds, or equivalently:
u{;]EP (12)
Under the set of constraints (12), the MSI given
by (5) is rewritlen as:
(13)

P -
=D _ 8y Rya —s's

1i=1 |

t=1,...,p

Eunts

I
The minimization of (13) sl'ghj::t:t. to (12) can be
solved by using Lagrange multipliers. It can be
castly shown that the optimal coellicients of the
unbiasced p-channel umrginal;lnﬁltur are given hy:

- _ ﬁl- . —lﬂ
5
. 3: ! )
Ay = —u“) i=2....p (14)

and the MMSE associaled with the optimal coetfi-
cients (1) s

- A .
PH

(Eunh)min — TH “5)

I ﬁ.,. is posibive definmte, then A > 0. It has
heen shown previously thatt A < 1. Therelore,
the MMSIE associated wilh the optimal unbiased
p-channel marginal L-filter 15 always greater than
the MMSE (11) produced by the optimal uncon-
stramed p-channel marginal L-filter. An estimate
8(k) of s has Lo he wsed 1n I,]u:-! design of Lthe oplimal
unbiased nltichannel marginal L-flter, too.

A wmnllichannel warginal L-filter s said to be
location-tnvarianl, 1F 1its output 15 able to track
stoall o rturbations of its inpul, ie., x'(k) = x(k}+
b nphies thad |

y' (k) = T[x'(4)] £ y(k) + b (16)

where y(&) = T[x(&)]. The definition of location-
invariant mltichannet marginal L-filker (16} yields
Lhe following sel of constrands imposed on Lhe Hller
cocthicienls; !

Y R e =
cla;; o= bV, J-Il

oy o= 0 Vi, 1 £, '—*t

(17)
wlhere ¢ denoles the {N X B unilary veclor, re.,

v (1,0, 0T By uwnrl orating (17) into (5)
we oblain:

r |
Eloe = ZH{;‘]F'J!“H} (18)
i=1 J
where !
l:{-n ija:'z R 1}1;:
) R}, D R,
R, = : * (19)
T-r .-}-1- "'+
| R‘]p I?'EF | R-p'.ll N
with fi,_,-.- = K n_,u"] 73,0 = L, ...,p and n; =
(My,--ngy) ', t=1,...,p. The minimization

of (18) subject to (17) is formulated as mminza-
f1on of Lhe following Lagrangian (unction:

: ,p) = L a )1'1;}11(,-}

1=

— ¢l ay;) - E Al a;)

i=1 i£j

Alagi, A Ji=1,

+Z{ﬁjj(l

(20)



Differentiating A{aj;, Azi; (4,6 = 1,...,p) with re-
spect to a;; and equating the partial derivalives
with zero, p independent sets of equations result,

1.0.: ;

T oAe T

" . 1 ;’hg,'l.‘} )

Rpaf;, = 5 : t=1,...,p (21)
I ;"pt'“ il

which give the optimal coellicients nEi] in terms of
the Lagrange multiplicrs Ay, ..

sume thal, 11.;,'1 exists and can be deconiposed as
follows:

 Api. Let us as-

1My | LT

S 1121 . P:.Ep

HJP = : : : (22]
L Ppl I Ilpp n

where Py, 4,7 = 1,...,p are (N x N} square
matrices. 'The Lagrange mpultipliers Ay, ..., Api are

obtained by solviug the following set of equations:

b

o' Plhe - t}TIH,,lp T Ay ] T 07
X | : :
ﬂJ'I}“” . Errl-.irrh A“ e D
I o'Phe - nTl’},Piﬂ jL Api LU
i (23)
or equivalenily: |
| cl--(G }
A= 2.2 24
o {lFE'I.I'GP} (21)

where G, = {Gy;} 4,7 :Lr 1. ..., pis the lefi-hand
side (px p) square matrix of (23) and ¢y (G, ) stands
for the cofactor of the ij-clement of Gy, In the
lollowing, the subscript pwill be dropped oul for
notation simplicity, By using (21) and (24) the fol-
lowing optitnal coeflicients of the location-invartant

p-channel marginal L-filtet are obtained:
|

[ E;ll{G)E ]
) i oL | (Gle |
n'["}-"det.(G}R-" - t=1,...,p
| cp(G)e |

(25)

and the associated M MSH is given by:

{ < N
- Lhztf}g) g{:ii(G) (20)

It is scen that the oplimal coeflicients (25) are inde-
pendent, of the two-channel constant signal to be es-
thmated. Unfortunately, tBe location-invariant two-
channel marginal L-filter'leads only to a slightly
higher noise suppression: than its single-channel
counterparts, as will be scen later on.

[Elﬂc)min

3 Computation of the moments of
the multivariate order statistics

. |
‘A diserele calculation of the correlation matrices
and mean veetors 18 described in this seefion. 1t
s hased on the oplimal quantization of each 1n-
put signal (noise) vector component in the mean-
gquared-crror sense, More specifically, discrete cal-
culation of the correlation matrices and mean vec-
tors is needed in order to avord the extensive nu-
merical integration involved in the definition of the
moments of the order statistics [2, 8). 1n the umi-
variate case, a discrete ealeufation of the moments
of the order slatistics can be devised if eacl com-
ponent of the inpul vector, which 1s a conlinuous
random variable, is mapped into a diserele random
variable. 'This ean be accomplished by employing
e optimuin Lloyd-Max quantizer [6] whose de-
sign is well-established in the literalure, It 15 also
required - bo devise a discrete calculation ol 1he mo-
menis of the order statistics in the bivanale case.
To do 80, Lhe two-dimensional vectors of continuous
candoim variables for all possible patrwise combina-
tions bebween dillerent channels should he mapped
o two-dimensional vectors of diserete random
variables by employing vector quantizalion. In our
approach, numerical inlegration is required only
e design of Lloyd-Max quantizer, as will be scen
ladaer omn.

Lot us assume thal »;, 3 = 1,....p lins been
quantized Lo M disercte values yiclding a discrete
random variable 2] € Uj = {0, 5,2, - 5.8)
Then, the clanents of any submatrix of lﬁl.,,, HR
R, j,i=1,...,paregiven by:

' M M

RI{ = Bloyesn) = D D Minbin

m=1ln=]}
f[r',n;j,i}{“j,nn”i,n)
ms=l, N gi=1,p

(27)

where f(r_,,;ﬁ](nj_,,,,u.,-r”) can he evalualed in
terms of Py o 0{tm, Vin). Yor ¢ = 3,
Fir 5.5 (05,m ) 1 0 ) denotes the value al (0, Vi n)
of tlie cumulalive distribution function (cdf) of
the order statistics fromn a univariate population
and well-known fortnulac [2, 8] can be applied.
The above-mentioned formulae are in terms of
F,,j(u_,-.m}* Finally, the values of Fy (v;m) at v m
are calculated by using the probabilitics of discrete
evenls {x} = Ui}, 10

L))

F;,}.(tﬂjj,“) = Z I’r{a:;-' = v m=1,..., M
g=1

(28)
The probabilities involved in (28) depend on the
n!ut.mm!I-:Iﬂmﬂi-:m ]{‘.!\-’{".IH g lig+ along Lhe j-th
dimension of the signal determined by the Lioyd-



Max quantizer design:

1041
Pr{z] = vy} :f; fo;(zj)de; - (29)

ny
where f; (z;) denotes the marginal pdf of the j-th
random variable x;.

For i # j, the results reporied in [11, 13]
can be exploited to evaluate the cdf values of
the two-dimensional order statistic {(xj(,y,2i))
at (¥ m,Vin) in terms of the probability masses
Fe(Vim,Vin), £ =0,...,3 in the four regions of
{z;,z;) plane. The probability masses can be casily
calculated in lerms of the probabilities of the dis-
crete events {1:; = % m, &} = V). The computla-
tion of these probabilities depends on the decision
levels along the j-th and i-th dimensions provided
by the Lloyd-Max quantizers and can be done with-
out any difficully.

The calculation of the elements of each mean vec-

tor 4., =1,...,pi8 performed by using:

E[mj{r)] — Z Uj:'“f(rij}(”jnrﬂ) r= 1:l|" . *!N |I
m=1 .
| (30)
4 Maultivariate Distributions

A multivariate distribution is said to be uniform,
(Gaussian, Laplacian etc. when the univariate
marginal distributions are all uniform, (Gaussian,
Laplacian etc. (1, 4]. The previcus attemnpts to nse
nonlinear filters based on order statistica for vector-
valued signal processing either have been derived
from a natural generalization of univariale expo-
nential distributions [10, 9] or have been tested on
a contaminated multinormal distribution which has
been used Lo model long-tailed multivariate distri-
butions [11}-[14]. In the following, the design of
the bivariate Laplacian distribution is examined.
It is well-known [1, 4] that a joint distnbution

Fy, z,(z1,22) given by:

Fe, zy(21,22) = Fo (71) Fz(22) [1+a
x(1 = Fg,(21)) (1 — Fg,(22))]

-1, +1],

(31)
where o € has as marginal cdf’s
Fy (-T*':)
(dl) is the so-called Morgenstern’s family. We are

interested in the case: |

1 exp[v2 ] if x; <0
Fz,(2i) =
1u-% EIP["‘"\/E'E:' if z; >0
(32)
for ¢ = 1,2. This approach yields the bivatiatl.e

Laplacian distribution.
LE': [z, s;(Il:IE:HhH.&’) — f.-.-l Ig('tl- '91:« E“ﬂﬂ)

where 8 = (0;,0:)7 I' is the location paramelcr -:‘pf

i = 1,2. The family of joint distributions

Ue 'distribution. tov vy = 03 = /2, the MLE
of the location veclor & '
ple of N observations {Il,...|,IN}, where x; =

(i1, 2i2)T i =1,...,N,is the generalized vector

median (GVM) [10] ‘which uses the following dis-
tance function between the vectnrs x; and x; :

dist(x;, %) = ||x; — xi|[1 - 1_11[1 + o sgn(z;; —
—zy, 252 — Ti2) {1~ EID[—]Ijl — 21]]}
x{1 — exp[—|zj2 — ziz|])]

(33)
5 Simulation examplels

A two-channel one-dimensional input signal se-
quence which obeys various bivariate distributions
ranging from the shori-tailed Lo'the long-tailed ones
has been used. In this experiment, s has been as-
snumed known in order to compare quantitatively
the performance of multichannel L-filtcrs to that of
their single-channel counterparts [8], as well as of
vector median [10], of marginal median [11, 13] and
of various ad-hoc estimators, such as the arithmetic
mean. The quaniitative criterion we used was the
noise reduction index {NR) defined as the ratio of
the oulput noise power to the input noise power,
1.e.,;

S, (y (k) — 8)T(y(k) ~ s)
5, (x(k) —8Y7 (x(k) — 8)

Due to lack of space, only the [performance of the
nonlinear filiers under study when a vector-valued
conatant signal s = (1.0 ‘Eﬂ)r 18 corrupted by
addilive white bivariate noise n{k) whose compo-
nents are distributed according to the Laplacian-
Morgenstern distribution is copsidered. A bivari-
ate noise with zero-mean vector, oy = ¢z = V2 and
o = 1.0 has been assumed. The NR index is shown
in Table 1 for filter lengths N = 5. It can be clearly
scen that the unconsirained two-channel L-filter at-
tains the highesi noise reduclion. The noise reduc-
tion capability of the unbiased two-channel L-filter
approaches the one of the the unconstrained two-
channel [-filter. Furthermore, the unbiased Lwo-
channel L-filler attains again almost 2 dB higher
noise suppression than its single-channel counter-
part [8]. This superior behavior is attribuled to
the fact that the unbiased twp-channel marginal
[-filter utilizes the correlation bet.ween the compo-
nenls of the input vector-valued signal. [i is seen
that the location-invariant two-channel marginal L-
filter has only slightly better pérfﬂrmance than its
single channel countlerpart. In: general the mulii-
channel marginal L-filiers have better performance
than the arithmelic mean, the marginal median
[11, 13] and the vector median {10]. The price
which is paid for the superior lpﬂrfnrmance is the
complicated design procedure.

As can be seen from (10) and (14), the optimal
coefficients of the unconstrained and unbiased p-
channel marginal L-filters depend on the knowledge

NIt = 10log (34)



of the constant signal s (Lo be estimaled) and of the
joint pdf of the components of the 1mput veclor-
valued sigual x{£). In many practical applications,
the constant stgnal s 158 unknown, "T'he jond prob-
ability density funclion of the componeuls of the
input vector-valued signal x(k) can be easily esti-
mated by its empiric younl pdf. Therclore, s musi,
be eslimnated al every Litne-instant & from the pasi
L-filter outputs y({), {= k—1,,k—-2,.... Let &(k)
denote the estimale ol s al timeanstant k. 'T'he
estimate §(k) will he vsed in hie design of Lthe op-

timal L-filters. These {ifters are applied Lo give the,

filter outputl y{&} which 1s a second (and hopelully
hetter) estimale of s(k). The following estimation
procedure for s is proposed:
]f k—1
k)= 3 vl (35)
N,
£ 1=k- N,

whaere N, 18 chosen to be sutfictently large. 1 hias
been verified by experiments that the estimator
(35) having N, = 49 is very good mud gives the
same noise reduction indlex as in the case of known
s for a nmltichannel L-hOlter of length & = 5. T'lwe
two-step procedure outlined above can be initial-
ized by using the marginal median of Lhe inpat
veclor-valued observations as an inilial estitnate of
K.
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Table ;' Noiske RepuorioN {(in «J83) rFow oy
LAPLACIAN-MORGENSTERN IMSTRIBUTION NOISE
MO

Filter - NIV{N =5)
antlinetic mean T -6.966
margimal median TTOAT642
v{tct(j;"tm:tliunh T -0.174
peneralized vecter median -6.210
nncoustraimed 2-channel )
tnarginal L-filter -12.774
unbiased 2-channel )
marginal L-filter -12.617
locationanvariant 2-channoel h
marginal L-filter -8.061
uniijiu;asml single-channel
L-lillcr -14.4%M

“Tocation-invanant single-channel |
L-filter -8.016




