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ABSTRALT Two novel adaptive nonlinear Tfilter
structures are proposed which are based on linear

combinations of order statistics. These adaptive
schemes arve modifications of the standard LMS
algorithm and have the ability to incorporate

constraints imposed on coefficients in order to permit
location-invariant and unblased estimation of a
constant signal in the presence of additive white
noise. The convergence in the mean of the filter
coefficients 1s proven. The proposed filters can adapt
well to a variety of noise probability distributions
ranging from the short-tailed ones to long-tailed
ones.

1 Introduction

Adaptive filters constitute an important part of
statistical signal processing. They have been applied
in a wide variety of problems [1]. An effort has been
attempted to combine the adaptive filtering and the
nonlinear filtering [2]. Extentions of the LMS and RLS
algorithms have been proposed in [3]. Adaptive hybrid
filter structures have been proposed in [4].

The maln purpose of this paper is to extend the
standard LMS5 algorithm by applying it to the
adaptation of the coefficients of the L-filters in
order to 1incorporate imposed on the
coefficients. L-filters are defined as linear
combinations of the ordered data in the filter window,

constraints

i.e., tha output of the L-filter at time instant k 1s
glven by:

|

y(k) = L 3, X, (1)

i=1
whare x:” is the i-th largest observed data and M is
assumed to be odd. 1t has been proven [5,6] that the
optimal L-Ffilter for estimating a constant signal in
the presence of additive white nelse shaild be either
location-invariant or unblased. let e, depﬂtes the Mxl
unitary [1,...,1] and a =
[, en ] L-filter
caefficients. The necessary and sufficient condilion

vector, 1i.e., e,

denotes the vectar of

for a location-invariant L-filter is:
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Tha sufficient conditions for an unbiased L-fllter

are:

T

e, a-= i

a, = a, ., i=k,...,(M-1)/2 (3)

and the noise distribution should be symmetric about
Iere,

Two novel schemes are derived by rewriting the normal
equations in a form that takes into account  the
constraints and by using instantaneous values for the
correlations of the ordered noise samples in order to
derive an estimate for the gradient vector.

2 Constrained LMS adaptive L-filters

A constant signal s corrupted by zere-mean

additive white noise is considered. Thus, the input
samples have the form X= S + R, whare h are i.i.d.
random variables having zero mean. The
distribution is assumed symmetric about zero,

First, the adaptation formula for the location-
invariant adaptive LMS L-filter is derived. Let n

r

denote the vector of the ordered noise samples, i.e.:

holse

no= Dy gy e g (4
The mean squared error J is glven by:

2 T
J = E[ (y(k}-s}* 1=-a Ra (3)

where R is the correlation matrix of the erdered noise
samples., Its ({i,j) element 1is given by rr
E[n{”n{”], i,J =1,...,M. Let e denotes the {M-1}/2xl
unitary vector. The coefficient vector a 1s rewritten

45:
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...aH] . Similarly, n_can be partitioned in the form

(6}, i.e.:

where tll--[aI . and u;[a
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where nHMh”;H if the median  noise  sample,
e R I L and L L PR

"hﬂ] . Then, the correlation matrix R is partitioned
as follows:
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where H|= E["r|":1]' R -

T T
. ) E{n“nrz]. R= R., R-=
E['hz"rzl‘ r= E[
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? .
and r= E[n“H+”f”]. FThe MSE {5) is rewritten as:
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as= [nj a E]
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p’ = [re -r | re -r,)
(10)
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The main advantage of this version of the MSE is that
it leads to an adaptation scheme which does not use
any heuristic technique to impese location-lnvariance
e.g. the normalization of the coefficlents that would
be derived by a direct of tha LMS
algorithm to the minimization of the MSE given in {&).
The steepest descent algorithm for the minimization of

application

J in (9} is given by:
alk+l) = a(k) + p [p’ - H; alk}} {11)

where p is the adaptation step and H; is the symmetyic
part of the matrix R’. The bracketed term 1is the
gradient wJ(k} of MSE with respect to af{k}). fn the
following, we shall drop the primes from p’ and R;.
estimate of the
gradient wJ{k} is to use instantaneous estimates for p
and HE:

The simplest way to develop an

- ” k -
p(k) = nitH*lJ!E}{ Mmeryroy®noa” “r{k} }

(12}
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The LMS adaptation formula is written as follows:
alk+l) = a (k) + p [p(k) - R {k} a(k)] -

] i . .
= alk) + 4 e{k) { x {k}- Rya1) /2181 ) (14}
where e{k) = s - y(k}, ir[k] = s e + 0(k) and

5 + N The coefficient for the

*tmnyre) T Mmyey
median sample is given by:

RO (S I (S (15)
The structure of the proposed adaptive filter 1s shown
in Figure 1.

We proceed next to the derivation of the unbiased
IMS adaptive L-filter. Let L be the following [(M-1)/2
» (M-1)/2F matrix:

0 ... 01
Lo [0 1o
: . (16)
o 00"
By using {3), the coefficient wvector takes the
foitiowing form:
T T T
- | |
a ["I a{Hane 9 L] (17)
.
where &thuen 1 - 2 @ a. The correlation matrix of

the ordered noise samples exhibits a double symmetry
which is expressed by the equations:

.
r,-Lr,R-R,R -LRLRL=LR (18)

A

By employing (18), the MSE Iz given by the following
expression:

T T
J=1r -1 a, &+ 2 9 R a {19}
where
D=vre-r {20)
T T
R=H]+HEL+2{TEE-ZPIE} (21}

Again, a steepest descent algorithm can be written:
ﬁl[k+1} s &l{k} 2 { o-R ﬁl[k] ) (22)

where R is the symmetric part of matrix R. The
instantanegus estimates for o and Hs can be derived as
previously. Let u ba the following [{M-1)/2 « 1]

vactor:
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then:
- ok k i
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R(k) =n (k) utk) - 2n " (K
R3[ ) = nrl{ ) u (k) - "un+n;?f!'ﬁqt )+
v 2 { n e -n (k})e (25)
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Let wik) = [m = Py oo Mo My )
and  v{k) = ul{k} w(k). After some algebraic

manipulation the following unbiased tMS adaptation
formula is obtained:

&1{k+11 = a (k) + 2p { e(k) In (k) - ntm+11lee] +

k
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3 Convergence properties of the propased adaptive
L-filters

In this section , the convergence in the mean of
the locaticn-invariant adaptive LMS L-filter by using
the fundamental assumpiion [11 is proven. The proof ef
the convergence for the unblased adaptive LMS L-filter
is similar.

Let 3b denote the aptimal
coefficients except the one for the median sample.
Then:

vactor of the

Ra = p {27

4]

The optimal filter coefficient for the median sample

is given by a = l-E: &b‘ Let c{k} denote the

(Hel )2 -1
caefficient error vector:

c(k) = alk) - a (28)

The coefficient error far 3 411/2 is
! K 29
Sz - Bwa (k) {29)

Thus it suffices to prove that E[c(k)] tends to D as k
tends to w. If the LMS algorithm is rewrilten in terms
of c(k) and the expected values are taken, then by
using the independence of the coafficient vector from
sample vectors the fellowing

the previous ordered

equation is obtained:
E[c(k+1)] = (I - p R} Efc(k)] + w {p" - R a) (30)

The second term of the right side of (30) equals zerc
due to (27). Therefore !

Elc(ke1)] = ( 1 -p R, } Elc{k}] (31)

Therefore the mean of c(k) converges to zero as ¥
tends to w, when R; iz positive definite and the the
following ipequality is satisfled:

2

G <y« (32)

b

max
where A is the largest eigenvalue of the matrix R’.
Since R; is characterized by a large eigenvalue
spread, the rate of convergence of the location-
invariant iMS adaptive L-filter determined by 1ts
minimal eigenvalue.

4 Simuylation Examples

The proposed iMS constrained adaptive L-filters
have been implemented using € language and have been
tested for one dimensional signals for uniform,
Gaussian and Laplacian distributions. As a measure for
shall coefficient
estimation error Af{a,k), which is defined by:

]. M
Mak) = —= 5 (afk)-a ) (33)
3=
where aLD, j=1,...,M are the optimal coefficients for
uniform, Gaussian and Laplacian distribution reported
in [5]. It has been shown that the proposed nonlinear
adaptive filters can adapt well to a variety of noise
probability distribut ions ranging From the
short-tailed ones {e.g. uniform) to the long-tailed

ones {e.g. Laplacian}.

convergence, we conslder the

An example of the performance of  the
lacation-invariant LMS L-filter is shown in Figure 2.
The input constant signal corrupted by Laplacian white
noise having zerc mean and varlance 2.0 is shown in
Figure Za. The cerresponding output of the lecation-
invartant IMS L-fllter for M=9 is shown in Flgure 2b.
The injtial t-filter is chosen to be midpoint {i.e.
afag-U,E, aE-,..-aE-ﬂ]. The choice for the adaptatien
step is p=0.003. The coefficient astimation
A{a,k) is plotted in Flgure 2c.
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Figure 1: Locatlon-1nvariant LMS L-filter structure.

Figure 2:(a) Laplacian nelse having zero mean and
variance 2.0. {b) Filter output by using lecation-
invariant LMS L-filter for M=%, when the 1initial
fFilter is midpoint. (c} Ceefficient estimation ervor
of the location-invariant LMS L-filter for Laplacian
noise, when the initial fllter is midpoint {M=9).
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