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ABSTRACT
��-filters are a fundamental filter class within the family of or-
der statistic filters. In this paper, starting from first principles,
we derive the cumulative density function and the probability den-
sity function of time and ranked ordered samples for independent
identically/non-identically distributed input random variables. The
raw second moments and the product moments of the time and
ranked ordered samples are then computed for independent iden-
tically distributed input samples. Based on the aforementioned
moments the correlation matrix of the time and ranked ordered
samples is derived and its eigenvalue distribution is determined.
We present relationships between the eigenvalues of the correla-
tion matrix of time and ranked ordered samples and those of the
correlation matrix of the ordered samples.

1. INTRODUCTION

Nonlinear filters have become a very important tool in signal pro-
cessing, and especially in image analysis and computer vision. For
a review of the nonlinear filter classes the reader may consult [1].
One of the best known nonlinear families is based on the order
statistics. It uses the concept of data ordering. One of the major
classes of order statistic filters is the ��-filter [2, 3]. It has the form
of a linear combination of the observations and it exploits the com-
bined rank and location information inherent in the observations.
Powerful extensions of the ��-filters have been proposed in the lit-
erature, such as the order statistic filter banks [4], the permutation
filter lattices [5]. Closely related estimators to the ��-estimator
have been proposed for the estimation of the mean using order
statistics in [6]. In practice, adaptive designs based on the Least
Mean Squares algorithm (LMS) of ��-filters and their extensions
prevail [7].

In this paper, starting from first principles, we derive the cu-
mulative density function and the probability density function of
time and ranked ordered samples for independent identically/non-
identically distributed input random variables. The raw second
moments and the product moments of the time and ranked ordered
samples are then computed for independent identically distributed
(i.i.d.) input samples. Based on the aforementioned moments the
correlation matrix of the time and ranked ordered samples is de-
rived and its eigenvalue distribution is determined. Although ��-
filters loose some of their advantage in an i.i.d. environment, like
permutation filters [8], because all time-rank orderings are equally
likely, the properties derived under this assumption give a valuable
insight into the operation of adaptive LMS ��-filters in respect of
their convergence in the mean and in the mean-square. Such an
i.i.d. environment is the case of a constant signal corrupted by ad-
ditive zero-mean white noise. For an observation vector of length

� , we prove that � out of the �� eigenvalues of the time and
ranked ordered samples are given by the eigenvalues of the cor-
relation matrix of the ranked ordered samples divided by � . We
also derive lower and upper bounds for the minimal and maximal
eigenvalue of the correlation matrix of the time and ranked ordered
samples. These bounds depend on the extreme eigenvalues of the
correlation matrix of the ranked ordered samples. The latter eigen-
values are related through inequalities with the eigenvalues of the
ranked ordered noise samples. The theoretical results have been
verified by numerical computations.

The outline of the paper is as follows. Section 2 briefly de-
scribes ��-estimators. Section 3 deals with the probability density
function of one time and ranked ordered sample and the joint prob-
ability density function of two time and ranked ordered samples.
The eigenvalues of the correlation matrix of independent identi-
cally distributed time and ranked ordered samples are studied in
Section 4. Upper and lower bounds on the extreme eigenvalues
are derived in this section as well. Similar bounds on the extreme
eigenvalues of the correlation matrix of ranked ordered samples
are presented in Section 5.

2. ��-ESTIMATORS

Let us consider that the observed signal ������ can be expressed
as a sum of an arbitrary noise-free signal ������ plus zero-mean
additive white noise ������, where � denotes discrete-time. Let
����� be the � � � vector of input observations
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and ����� be the ranked ordered input vector at � given by
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where ������� � ������� � 	 	 	 � �������. The vector ����� is
commonly referred as the vector of the order statistics of �����.
Let us define the temporal location vector [5]

������� � �
������ 
������ 	 	 	 � 
�� ����� (3)

where


����� �

�
� if �������� �����
� otherwise.

(4)

In (4) �������� ����� denotes that the �th order statistic occupies
the �th temporal sample. By using the temporal location vector we
create the following �� � � vector
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An estimate����� of the original (noise-free) signal can be obtained
by ����� � �������� (6)

that defines the so-called��-��-estimator [2]. Henceforth we call
this estimator ��-estimator for brevity.

Let us assume that ������ defined in (5) and ���� are jointly
stationary stochastic signals. Based on the stationarity assumption
we are interested in the derivation of the ��-��-filter that mini-
mizes the mean squared error
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�
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where ��� � ���������
�
������ is the correlation matrix of the

time and ranked ordered samples, ������, and ��� � ������
������� is the cross-correlation vector between the vector ������
and the desired response ����. Clearly, provided that ��� is not
singular, the optimal��-��-filter coefficient vector �� is given by

�
� � ����� ���	 (8)

Approaches to determining the ��-filter coefficients � using the
LMS algorithm have been proposed in [3, 9]. The convergence
in the mean and in the mean square of the LMS-based design ap-
proaches depends strongly on the eigenvalue distribution of ���

[10]. The objective of this paper is to study the eigenvalue distri-
bution of��� in an i.i.d. environment.

3. PROBABILITY DENSITY FUNCTION OF THE
CORRELATION MATRIX OF TIME AND RANKED

ORDERED SAMPLES

Let ����� and ����� denote, respectively, the probability density
function (pdf) and the cumulative density (cdf) function the �-th
input observation. The pdf of the random variable ����� for in-
dependent non-identically distributed observations is given by the
following expression:
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where 	 � ��� �� 	 	 	 � ��, 	�
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over all permutations ���� ��� 	 	 	 � ����� of �� �� 	 	 	 � � � �� � �

�� 	 	 	 � � which are
�
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in total. Eq. (9) can be proved starting

from first principles for � � �, and subsequently applying math-
ematical induction. Alternatively, it can be obtained as a special
case of the analysis in [8, 11]. For � � � and � � � � � (9)
yields
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The cdf of the random variable ����� can be obtained by
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For i.i.d. input observations, we have
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where ������� is the pdf of the�-th order statistic ���� [12].
For � � � � � � � , �� � � �� �� 	 	 	 � � , � 
� � and �� � ��

the joint pdf of the random variables ��
�� and ����� is given by
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For i.i.d. input observations (13) yields
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where ��
�������� ��� is the joint pdf of the order statistics ��
� and
����.

4. EIGENVALUES OF THE CORRELATION MATRIX OF
TIME AND RANKED ORDERED SAMPLES

In the subsequent analysis we assume that the input observations
are i.i.d. random variables, i.e., the noise-free signal is a constant
�. Under this assumption, using (12) and (14), we obtain the fol-
lowing expressions for the second-order moment of the random
variable ����� and the product moments of the random variables
��
�� and ����� :
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where � � �, � 
� � and �� � � �� �� 	 	 	 � � . Let us denote by
� � �� � �����

�
�� the correlation matrix of the ranked or-

dered samples. Similarly let ��� � ������
�
��� define the cor-

relation matrix of time and ranked ordered samples. By definition
both ��� and �� are positive semi-definite. Following similar
arguments to [13, pp. 190-191], we argue that the aforementioned
matrices are positive definite if the random variables of concern
are linearly independent. It is trivial to show that the sum of the
eigenvalues is the same in both��� and�, that is

���
���

������� �

��
���

����� � ���� � ��� (17)



where ����� is the �-th eigenvalue of � and �� is the noise vari-
ance. Let � denote an � � � matrix of zeroes. By employing
elementary similarity transformations it can be shown that ��� is
similar to a matrix having the following structure:


���
� � 	 	 	 �

� ��� 	 	 	 ���

...
. . .

...
� ��� 	 	 	 ���



��� (18)

where

� �



����

�
�
���

�
� �����

��� 	 	 	 �
� �����

���

�
� �����

���
�
�
��� 	 	 	 �

� �����
���

...
. . .

...
�

� �����
���

�
� �����

��� 	 	 	 �
�
���



����

(19)
and ��� , �� � � �� 	 	 	 � � are appropriate matrices. The eigenval-
ues of matrix� can be obtained analytically, i.e.
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Accordingly, we have found that under the i.i.d. assumption �
out of the�� eigenvalues of��� can be obtained from the eigen-
values of �� divided by � . The eigenvalue distribution of the
correlation matrix of ranked ordered samples�� and the time and
ranked ordered samples ��� is plotted in Figure 1 for uniform,
Gaussian and Laplacian noise distribution having zero mean and
unit variance, when � � � and �=5. In the following subsection,
we demonstrate that it is also possible to derive upper and lower
bounds for the smallest and the largest eigenvalue of���.

4.1. Upper and lower bounds on the extreme eigenvalues of
the correlation matrix of time and ranked ordered samples

The correlation matrix of the time and ranked ordered samples can
be decomposed as
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where 
����� denotes the diagonal matrix whose diagonal ele-
ments are those inside parentheses, 	 is the��� identity matrix,
� denotes the Kronecker product and
 � ���. The � ��
matrices� and� are given by

� �



���

� ��� 	 	 	 ���

��� � 	 	 	 ���

...
. . .

...
��� ��� 	 	 	 �



��� (22)

� �
�

� �� � ��

�




� � 	
�

(23)

where 
 is the � � � vector of ones.

 has�� eigenvalues whose sum equals zero. The sum of the

� eigenvalues of both � and � equals zero as well. Therefore,
the smallest eigenvalue of matrix � is negative while its largest
eigenvalue is positive. It can be shown that � has two distinct
eigenvalues, i.e., ����� � �

�
with multiplicity 1 and ����� �

� �
� �����

with multiplicity �����. Accordingly, the eigenvalues
of 
 are as follows:

�
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where ����� are the eigenvalues of matrix �. The previous dis-
cussion yields the following expressions:
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Accordingly, we need to relate the eigenvalues of matrices 
 and
� to the eigenvalues of the correlation matrix of ranked ordered
samples �� � �. The latter matrix can be decomposed as fol-
lows:

� � �� 
��� ����� ���� 	 	 	 � ��� � 	 (26)

Let us define by ���	 and ��
� the maximum and minimum diag-
onal element of the correlation matrix of the ranked ordered sam-
ples, respectively, i.e.:
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By applying Theorem 8.1.5 [14, p. 396] we obtain
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The application of the same theorem yields also

���	

�
� ��
��
� � ���	����� �

���	

�
� ���	�
�

��
�

�
� ��
��
� � ��
������ �

��
�

�
� ���	�
� (31)

By combining (25) and the inequalities (29), (30) and (31) we get
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The numerical computations summarized in Table 1 indicate that
the extreme eigenvalues of ��� are equal to the extreme eigen-
values of �� divided by � , a result that is within the intervals
predicted by the analysis described above. As a consequence the
eigenvalue spread of the correlation matrix of time and ranked or-
dered samples is the same with that of the correlation matrix of
ranked ordered samples.



0 5 10 15 20 25
10

−2

10
−1

10
0

10
1

10
2

10
3

i

E
ig

en
va

lu
es

Correlation matrix (N=5,s=5)

Ranked ordered samples         
Time and Ranked ordered samples

0 5 10 15 20 25
10

−2

10
−1

10
0

10
1

10
2

10
3

i

E
ig

en
va

lu
es

Correlation matrix (N=5,s=5)

Ranked ordered samples         
Time and Ranked ordered samples

0 5 10 15 20 25
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

i

E
ig

en
va

lu
es

Correlation matrix (N=5,s=5)

Ranked ordered samples         
Time and Ranked ordered samples

(a) (b) (c)

Fig. 1. Eigenvalue distribution of ranked ordered samples �� and the time and ranked ordered samples ��� when � � � and � � � for
(a) uniform, (b) Gaussian, and (c) Laplacian noise distribution having zero mean and unit variance.

Table 1. Smallest and largest eigenvalues of �� and ��� for uniform, Gaussian and Laplacian parent distribution having mean � � �	�
and unit variance.

parent dis-
tribution

� ��
����� ��
������ ���	���� ���	�����

uniform 5 0.078672 0.015734 129.314823 25.862965
7 0.043776 0.006254 181.228691 25.889813
9 0.028086 0.003121 233.176925 25.908547

Gaussian 5 0.062604 0.012521 129.180824 25.836165
7 0.031849 0.004550 181.037213 25.862459
9 0.019249 0.002139 232.937543 25.881949

Laplacian 5 0.047948 0.009590 128.898323 25.779665
7 0.020916 0.002988 180.642761 25.806109
9 0.007333 0.000815 232.457473 25.828608

5. EIGENVALUES OF THE CORRELATION MATRIX OF
RANKED ORDERED SAMPLES

In the preceding analysis we have employed the correlation matrix
of the ranked ordered (noisy) observations. Under the assumption
of a constant signal corrupted by additive white noise, the latter
correlation matrix can be expressed in terms of the correlation ma-
trix of ranked ordered noise samples,� � �����

�
��, as follows:
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where� � ����� is the vector of the expected values of the order
statistics of noise samples. Subsequently, we analyze the behav-
ior of the eigenvalues of ��. For symmetric noise distributions
about zero, it can be shown that the matrix � �

�

�� � �
�

�
is similar to [15]
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For � odd, the matrices � and � in (34) are given, respectively,
by:
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where �� is the vector of the expected values of ����, ����, 	 	 	,
�
����

�
�
, �
 is the ����

�
�-dimensional vector of ones and � is the

����
�

� ���
�

� matrix that has ones along the secondary diagonal
and zeros elsewhere. It can be further proved that the matrix de-
fined in (34) has �� � �� zero eigenvalues and the remaining two
non-zero ones are given by
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Without any loss of generality, if �  �, we obtain
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By applying Theorem 8.1.5 [14, pp. 396] it can be shown that
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Theorem 8.1.8 [14, pp. 397] asserts that there exist nonnegative
coefficients ��, ��, . . . , �� such that

�������� � ������� ��� � ���
�
� (41)

where the eigenvalues are arranged in ascending order of magni-
tude.



If

�������� � ��������� ��� � �������� � � �� �� 	 	 	 � � � �
(42)

then it can be shown that

���	���� � ��
� � ��������� � ���	��� (43)

The assumption (42) has been verified in numerical computations,
as can be seen in Table 2. In the computations we have used the
tables from [16]. The validity of the upper bound in (43) is demon-

Table 2. Eigenvalues of matrices�,����, and�� for Gaussian
noise distribution having zero mean and unit variance, when � �
�	�.

� � ������� ������� ��� ��������
5 1 0.062604 -17.716818 0.062604

2 0.108597 0.062604 0.108505
3 0.207441 0.108607 0.207441
4 1.000000 0.207441 0.440627
5 3.621358 22.338166 129.180824

7 1 0.031849 -26.573335 0.031849
2 0.046911 0.031849 0.046911
3 0.073496 0.046911 0.073496
4 0.124484 0.073496 0.124328
5 0.227863 0.124495 0.227863
6 1.000000 0.227863 0.458341
7 5.495397 33.068721 181.037213

9 1 0.019249 -35.481640 0.019249
2 0.025896 0.019249 0.025896
3 0.036136 0.025896 0.036136
4 0.052806 0.036136 0.052804
5 0.081777 0.052806 0.081777
6 0.135986 0.081777 0.135798
7 0.241604 0.135996 0.241604
8 1.000000 0.241604 0.469194
9 7.406547 43.888177 232.937543

strated in Table 3 for uniform, Gaussian and Laplacian parent dis-
tributions having mean � � �	� and unit variance.

Accordingly, the smallest eigenvalue of�� and consequently
��� is controlled exclusively by the noise statistics, that is, the
smallest eigenvalue of the correlation matrix of the ordered noise
samples. On the contrary, the largest eigenvalue of both �� and
��� is influenced by the dimensionality of the observation win-
dow, the true constant signal value, and the noise variance.
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