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Abstract — In this paper, the segmentation of ul-
trasonic images using self-organizing neural networks
(NN) is investigated. A modification of Learning Vec-
tor Quantizer (called L2 LVQ) is proposed so that the
weight vectors of the output neurons correspond to the
L2 mean instead of the sample arithmetic mean of the
input observations. The convergence in the mean and
in the mean square of the proposed variant of LVQ are
studied. Experimental results show that L2 LVQ out-
performs other segmentation techniques that employ
thresholding a filtered ultrasonic image with respect to
the probability of detection for the same probability
of false alarm in all cases.

1. Introduction

Neural networks (NN) [1, 2] is a rapidly expanding research
field which attracted the attention of scientists and engineers
in the last decade. A large variety of artificial neural networks
has been developed based on a multitude of learning techniques
and having different topologies [2, 3, 4]. They have applied suc-
cessfully in many research fields including speech and image
processing, pattern recognition, data compression, control, di-
agnostics, knowledge representation etc. [2]. Neural networks
have also found application for ultrasonic image analysis and
diagnosis [5, 6]. More specifically, neural networks utilizing the
backpropagation algorithm and competitive learning have been
used for the localization and classification of choroidal tumors
[5] as well as for enhancement and segmentation of ultrasonic
images of the eye [6].

Motivated by the relative simplicity of the LVQ, its abil-
ity to work in unsupervised mode in addition to its success
in image segmentation problems, a variant of the LVQ that is
more suitable for ultrasonic image segmentation is proposed.
More specifically, ultrasonic images suffer from a special kind
of noise called speckle. Speckle is an interference effect caused
by ultrasound (US) beam scattering from microscopic tissue
inhomogeneities. Ultrasonic speckle can be modeled as mul-
tiplicative Rayleigh distributed noise or as signal-dependent
Gaussian noise. The first model refers to envelope-detected
US B-mode data [7]. The second model describes more accu-
rately ultrasonic images where the displayed image data have
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undergone excessive manipulation (e.g. logarithmic compres-
sion, low and high-pass filtering, postprocessing, etc.) [8]. In
the case of pure multiplicative Rayleigh speckle, it has been
proven that the maximum likelihood (ML) estimator of the
original (noiseless) signal is the L2 mean [9]. Furthermore,
for signal-dependent Gaussian speckle, it has been shown that
the ML estimator closely resembles the L2 mean [10]. These
observations motivated us to modify the standard LVQ algo-
rithm so that the reference vectors correspond to the L2 mean
instead of the sample arithmetic mean. Such a modification
will provide more accurate reference vectors for each Voronoi
neighborhood and will result in a better segmentation of both
ultrasonic B-mode data as well as displayed US image data.
The convergence in the mean and in the mean square of the
proposed L2 LVQ NN are also studied. Therefore, the main
contribution of this paper is in the derivation and study of
convergence of a variant of Learning Vector Quantizer neural
network based on the L2 mean for ultrasonic image segmenta-
tion.

The outline of this paper follows. The derivation of L2

LVQ algorithm is described in Section 2. Section 3 is devoted
to the study of convergence of the proposed L2 LVQ neural
network. Experimental results are included in Section 4.

2. L2 Learning Vector Quantizer Algorithm

Let us assume a sequence of vector-valued observations x(t) ∈
RN and a set of variable reference vectors {wi(t); wi ∈ RN , i =
1, 2, . . . , p}. Learning Vector Quantizer tries to find the best-
matching reference vector wc(t) to x(t). This vector is up-
dated. This process is repeated. After a large number of itera-
tions, the different reference vectors tend to become specifically
“tuned” to different domains of the input variable x.

Let us denote by w′
i the (N × 1) vector having as elements

the weights comprising the reference vector wi squared, i.e.,
w′

i = (w2
i1, w

2
i2, . . . , w

2
iN )T . Let also x′ denote the following

vector x′ = (x2
1, x

2
2, . . . , x

2
N )T . Our goal is to place w′

i into the
input space RN in such a way that they minimize the mean
squared value of a reconstruction error of the form:

ε =

∫
X

‖ x′ − w′
c ‖2 f(x) dx (1)

where X ⊆ RN is the domain of the vector-valued observa-
tions x, dx is the volume differential in the RN space and w′

c

is the winner vector. The winner vector is determined by com-
paring the Euclidean distances between the vector of squared



observations and the vectors of squared weights, i.e.:

‖ x′ − w′
c ‖= min

i
{‖ x′ − w′

i ‖}. (2)

If the stochastic-gradient-descent algorithm [12] is applied to
the minimization of ε in the w′

c space and the vectors of square
weights are updated as blocks concentrated around the winner,
the following recursive relations for updating the vectors of
square weights yield:

w′
i(t + 1) = w′

i(t) + α(t)[x′(t) − w′
i(t)] ∀i ∈ Nc(t)

w′
i(t + 1) = w′

i(t) ∀i �∈ Nc(t) (3)

where α(t) is a variable adaptation step and Nc(t) denotes a
neighborhood around the winner. The updating equation (3)
implements the unsupervised learning of the L2 LVQ neural
network. In the case of supervised learning, the vectors of
squared weights are updated by using the reward-punishment
procedure adopted in the so-called LVQ1 [11].

The recall procedure of the L2 LVQ is used to determine
the class Cg represented by w′

g to which the vector of squared
input observations is most closely associated with, i.e.:

x(t) ∈ Cg if ‖ x′ − w′
g ‖=

p

min
i

{‖ x′ − w′
i ‖} (4)

where w′
i denotes the vector of squared weights of the i-th

neuron after the convergence of the learning procedure.
Having described the L2 LVQ neural network, we proceed

to the study of its convergence.

3. Convergence Analysis of L2 LVQ Neural Network

A theoretical treatment of the self-organizing process is given
in [13]. More specifically, the learning procedure of the LVQ
has been represented by a Markov process whose states are the
weight vectors wi. The Fokker-Planck differential equation de-
scribing the learning process in the vicinity of the equilibrium
in terms of the distribution of weight-error vector has been de-
rived. The average weight-error vector and the weight-error
correlation matrix have been determined as well. The analysis
presented in this paper extends the work reported in [13].

Two types of convergence, namely, the convergence in the
mean and in the mean square are examined. L2 LVQ net-
work converges in the mean, if the average vector of squared
weights converges to the expected stationary state of the net-
work as t approaches infinity. L2 LVQ network converges in
the mean square, if the trace of the correlation matrix of the
squared weight error-vectors tends to zero or remains bounded
as t approaches infinity. The case of a constant adaptation step
α(t) = α is considered for mathematical simplicity. General-
ization for the optimal adaptation step sequence α(t) = 1/t
[13] is also considered. We shall confine ourselves to the anal-
ysis of a single-winner L2 LVQ network, i.e., Nc(t) = {c}. Out
objective is to derive bounds on the overall time constant for
any squared weight and on the trace of the correlation matrix
of the squared weight error-vectors.

Let Vi(W
′) denote the Voronoi neighborhood of the i-th

output neuron with respect to the distance metric (2), i.e.,:

Vi(W
′) = {x ∈ X ⊆ RN | ‖ x′ − w′

i ‖≤‖ x′ − w′
l ‖

l = 1, . . . , p, l �= i} (5)

where W′ = (w′T
1 | w′T

2 | . . . | w′T
p )T . Following the analysis

in [13], the expected stationary state of the network is given
by:

w′
i = E[w′

i] =

∫
Vi(W′)

x′f(x)dx∫
Vi(W′)

f(x)dx
i = 1, . . . , p. (6)

It is seen that (6) gives an implicit definition of the stationary
solution of L2 LVQ. Nonlinear equation (6) can be solved by
an iterative scheme, such as the Newton method. In the se-
quel, it will be assumed that w′

i is known and our attention
will be focused on the study of the rate of convergence to the
stationary solution.

Let ui(t) denote the (N×1) vector of squared weight errors

at time instant t, i.e., ui(t) = w′
i − w′

i. The average squared
weight-error vector is given by [13, 14]:

E[ui(t)] = Y(t)E[ui(0)] (7)

where the expectation is with respect to the distribution of the
deviations of the squared weights from the stationary solution.
Y(t) is the following (Np × Np) matrix:

Y(t) = exp(−B

∫ t

0

α(ζ)dζ) (8)

where B is a (Np × Np) coefficient matrix which can be par-
titioned as follows:

B =

⎡
⎣ B11 B12 · · · B1p

...
. . .

...
Bp1 Bp2 · · · Bpp

⎤
⎦ . (9)

Each Bkl k, l = 1, . . . , p is a (N × N) square submatrix with
mn-element given by:

[Bkl(W′)]mn =

[
w2

km
∂

∂w2
ln

F̂k(W′) + F̂k(W′)

· δ(k − l, m − n) − ∂

∂w2
ln

∫
Vk(W′)

x2
mf(x)dx

]
W′=W′

(10)

where F̂k(W′) =
∫
Vk(W′)

f(x)dx and δ(k− l, m−n) is the 2-D

Kronecker-delta function, i.e.,

δ(k − l, m − n) =

{
1 k = l and m = n
0 otherwise.

(11)

Let us assume that (the real) matrix B is symmetric. It must
be noted that there is no such a guarantee in the general case
of a process described by a multivariate linear Fokker-Planck
equation [14]. Hopefully, the assumption that matrix B is
symmetric is valid in many practical cases such as when the
coefficient matrix B defined in (9)–(11) is evaluated for the
contaminated Rayleigh distribution [10]. If B is symmetric,
it is diagonalizable and possesses real eigenvalues [15]. Let
λi, i = 1, . . . , q, q ≤ Np be the distinct eigenvalues of matrix
B and ρi be the degree of multiplicity of the eigenvalue λi,
where

∑q

i=1
ρi = Np. Y(t) defined in (8) is a (Np × Np)

matrix which can be evaluated as follows:

Y(t) =

Np∑
i=1

yi(t)B
i−1 (12)



where B0 = I is the (Np × Np) identity matrix and yi(t), i =
1, . . . , Np are scalar functions to be determined. By applying
Caley-Hamilton’s theorem we obtain [16]:

Np∑
i=1

yi(t)λ
i−1
j = exp(−λj

∫ t

0

α(ζ)dζ) j = 1, . . . , q. (13)

It is seen that both sides of (13) are polynomials in λ. By dif-
ferentiating both sides of (13) with respect to λ ν-times, where
ν = 1, . . . , ρj − 1 and by evaluating the derivatives at each
λj j = 1, . . . , q, (Np− q) additional equations result. The solu-
tion of the above-described linear set of equations determines
the unknown scalar functions yi(t). In the special case that
matrix B possesses Np distinct eigenvalues, the application of
Sylvester’s theorem yields the following equation for Y(t) [16]:

Y(t) =

Np∑
i=1

(
Np∏

j=1j �=i

B − λjI

λi − λj

)
exp(−λi

∫ t

0

α(ζ)dζ) (14)

In the following, we shall assume that the eigenvalues of matrix
B are distinct. Therefore, we shall confine ourselves to (14).
For a constant learning step α(t) = α, (14) is rewritten as
follows:

Y(t) =

Np∑
i=1

(
Np∏

j=1j �=i

B − λjI

λi − λj

)
exp(−λiαt) (15)

whereas in the general case of a variable adaptation step α(t) =
1/t:

Y(t) =

Np∑
i=1

(
Np∏

j=1 j �=i

B − λjI

λi − λj

)
1

tλi
(16)

provided that λi > 0, i = 1, . . . , Np.
By combining (7), (15) and (16), it is seen that a neces-

sary and sufficient condition for the convergence in the mean
is matrix B to be positive definite, i.e., λi > 0. As can be
seen, the convergence is negative exponential in the case of a
constant adaptation step. The convergence is hyperbolic when
α(t) = 1/t. In the former case, α cannot be bounded by the
analysis made thus far. On the contrary, it will be shown that
such a bound on α can be derived if the trace of the correlation
matrix of the squared weight-errors has to remain bounded.

For a constant learning step α, it is clear that Y(t) is a
square matrix of negative exponentials. Therefore, any squared
weight converges in the mean to the stationary solution (6) as a
weighted sum of negative exponentials of the form exp(−λiαt).
The time τi required for each term to reach to 1/e of its initial
value is given by:

τi =
1

αλi
. (17)

However, the overall time constant τa, defined as the time re-
quired for any average squared weight to decay to 1/e of its
initial value, cannot be expressed in a simple closed form as
(17). By using the same reasoning as in the adaptive filter
literature [17], the overall time constant τa for any average
squared weight can be bounded as follows:

1

αλmax
≤ τa ≤ 1

αλmin
(18)

where λmin and λmax denote the smallest and largest eigenvalue
of matrix B.

The study of the convergence in the mean square will be fo-
cused on the case of a constant adaptation step for mathemat-
ical tractability. Let C(t) denote the correlation matrix of the
squared weight-error vectors. C(t) is of dimensions (Np×Np)
and has also the structure of (9) where the (N × N) square
submatrix Ckl(t), k, l = 1, . . . , p is defined by:

Ckl(t) = E[uk(t)uT
l (t)]. (19)

C(t) can be evaluated as follows [14]:

C(t) = Y(t)

[
C(0) + α2

∫ t

0

Y(ζ)−1D(Y(ζ)−1)T dζ

]
Y(t)T

(20)
where C(0) is the initial correlation matrix and D is a (Np ×
Np) matrix having the structure (9) with only the diagonal
submatrices being non-zero, i.e., Dkl = 0N×N , k �= l. The
mn-element of Dkk is given by:

[Dkk(W′)]mn =

[
w2

kmw2
knF̂k(W′) − w2

km

∫
Vk(W′)

x2
nf(x)dx

− w2
kn

∫
Vk(W′)

x2
mf(x)dx +

∫
Vk(W′)

x2
mx2

nf(x)dx

]
W′=W′

.(21)

It can be seen that coefficient matrix D is symmetric as a
result of its definition (21). Furthermore, it can be proven
that matrix D is positive semidefinite in any case. It is known
[14] that the following equation holds for the time-derivative

Ċ(t) of the correlation matrix C(t):

Ċ(t) = −α[BC(t) + C(t)BT ] + α2D. (22)

Let J(t) denote the trace of the correlation matrix C(t):

J(t) = tr[C(t)] = E[

p∑
i=1

uT
i (t)ui(t)]. (23)

It can be proven [10] that J(t) can be bounded by the following
inequalities:

J(0) exp(−2αλmaxt) + α2tr[D]t ≤ J(t)

≤ J(0) exp(−2αλmint) + α2tr[D]t (24)

where J(0) = tr[C(0)]. It is seen that if the adaptation step
is constant, we can only require J(t) to remain bounded. Let
Jb denote the maximum allowed deviation of J(t) from zero
when the exponential factor in the upper bound of (24) has
practically converged to zero, i.e., at t = 4τ ′

max = 2
αλmin

. A

sufficient condition for J(t) to remain bounded is given by:

0 < α <
Jbλmin

2tr[D]
. (25)

4. Experimental Results

The proposed neural network has been applied both to simu-
lated US B-mode data as well as to displayed US image data



for image segmentation. Due to lack of space only the simula-
tions that have been performed on a simulated image showing
an homogeneous tissue of size 4 cm × 4 cm with a lesion in the
middle of diameter 2 cm will be discussed. A Learning Vec-
tor Quantizer based on the L2 mean has been created using 49
neurons at the first level corresponding to input patterns taken
from a block of 7×7 pixels. The second level consists of 2 to
8 neurons corresponding to the output classes. A 7×7 win-
dow scans the image in a random manner to feed the network
with input training patterns. During the recall phase, the 7×7
window scans the entire image in order to classify each pixel
into one of p-many (p = 2, . . . , 8) classes. A parametric im-
age is created containing the class membership of each pixel.
Two output classes have been used representing background
and lesion respectively.

The NN approach to US image segmentation presented in
this work has been compared to the following simple segmen-
tation techniques that are usually encountered in practice:

1. Image thresholding without any preprocessing.

2. Image filtering by a 7×7 median filter and thresholding
the filtered image.

3. Image filtering by a 7×7 arithmetic mean filter and thresh-
olding the filtered image.

4. Image filtering using a 7×7 L2 mean filter and thresh-
olding the filtered image.

We have compared the performance of the above-described
strategies using the probability of detection (PD) and the prob-
ability of false alarm (PF ) as figures of merit. The probability
of detection corresponds to the percentage of pixels of the im-
age in the lesion area that have been correctly classified. The
probability of false alarm corresponds to the percentage of pix-
els belonging to the background of the image that were erro-
neously classified as belonging to the lesion. The comparison is
based on the probability of detection P̂D which has been calcu-
lated by linearly interpolating between the experimental values
of probabilities of detection that correspond to the two prob-
abilities of false alarm that are closest to the one of L2 LVQ.
The results obtained for the various classification methods are
summarized in Table 1. It is seen that an almost 16.7% higher
probability of detection is obtained by using the L2 LVQ NN
instead the L2 mean filter of dimensions 7×7.
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Table 1: Figures of Merit for Lesion Detection on a

Simulated US B-Mode Image.

Method PF (%) PD(%) Threshold P̂D(%)
Image 13.04 29.34 24 31.99
thresholding 15.19 32.18 23
median 14.85 37.85 20 38.13
7 × 7 18.88 43.33 19
arithmetic 13.78 38.95 20 41.28
mean 7 × 7 17.59 45.90 19
L2 mean 13.79 40.05 19 42.39
7 × 7 17.85 47.55 18
L2 LVQ NN 15.06 59.07 - 59.07


