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1 INTRODUCTION

Many theories for shape decomposition and recog-
nition have been developed in the past two decades.
Shape analysis is an important step towards shape
description that aims at describing a shape (or ob-
ject) before shape matching in which it is desir-
able to establish the equivalence of two shapes [1].
The algorithms for shape description are generally
classified in two classes, namely the external algo-
rithms and the internal ones. For example, contour
description algorithms belong to the former class
whereas region-based algorithms belong to the later.
Another taxonomy of shape description algorithms
is to information-preserving and non information-
preserving algorithms depending on whether or not
the original shape can be reconstructed from the de-
scriptor. In this paper, we deal with an internal
and information-preserving shape description algo-
rithm, namely the morphological shape decomposi-
tion (MSD).

It is well known that mathematical morphology is
very reach in providing means for the representation
and analysis of binary and grayscale images [2, 3].
The morphological representation of images is well
suited for the description of the geometrical prop-
erties of image objects. The morphological skeleton
and the morphological shape decomposition are two
popular approaches for morphological shape repre-
sentation. Morphological Shape Decomposition is
the decomposition of an image object (in our case of
the facial region) into a union of simple components
by using morphological operations, i.e., the erosion
and the dilation. It has successfully been applied to
the decomposition of a binary shape into a union of
simple binary shapes, that is, the maximal inscrib-
able disks [4]. A flexible search-based shape repre-
sentation scheme that typically gives more efficient
representations than the morphological skeleton and
MSD is developed in [5].

In this paper, we propose the use of morphologi-
cal shape decomposition to extract an appropriate
feature vector that is used in a pattern matching
algorithm, namely the Dynamic Link Architecture
(DLA) [6] for face recognition. A potential applica-

tion of the proposed method is in face modeling and
subsequently in model-based retrieval of a frontal fa-
cial image that corresponds to a specific person from
a video sequence that contains frontal facial images
of several persons. Face modeling may be consid-
ered as a special case of 3D object modeling, where
two coordinates are devoted to the description of the
spatial information and a third coordinate is related
to grayscale information. Another possible applica-
tion of the proposed method is as a recognition tech-
nique in teleshopping applications. In the following,
the state-of-the-art in face recognition techniques is
briefly outlined.

Two main categories for face recognition tech-
niques can be identified in the literature: those em-
ploying geometrical features (for example [7]) and
those using grey-level information (e.g. the eigen-
face approach [8]). A different approach that uses
both grey-level information and shape information
has been proposed in [6]. More specifically, the re-
sponse of a set of 2D Gabor filters tuned to different
orientations and scales is measured at the nodes of
a sparse grid overlaid on the face image of a person
from a reference set. The responses of Gabor filters
form a feature vector at each node of the grid. In
the recall phase, the grid of each person in the refer-
ence set is overlaid on the face image of a test person
and is deformed so that a criterion based both on
the feature vectors and the grid distortion (i.e., the
geometry) is minimized. An implementation of DLA
based on Gabor wavelets is described in [9].

A novel dynamic link architecture that com-
bines morphological shape decomposition and elastic
graph matching is developed and tested for face au-
thentication. That is, we propose the substitution of
the responses of a set of Gabor filters by the grey level
value of the reconstructed images at the several levels
of decomposition. There are several reasons support-
ing this decision, namely: (1) The decomposition of
a complex object yields simple components that con-
form with our intuition. In our case the component
is the maximal inscribable cylinder of unit height.
In addition, the method is object-independent [3].
(2) It allows arbitrary amounts of detail to be com-

1



puted and also allows the abstraction from detail [3].
(3) The representation is unique. Moreover, it is
information-preserving in contrast to Morphological
Dynamic Link Matching (MDLA) proposed in [10].
(4) MSD employs grayscale erosions and dilations
with a flat structuring function, namely a cylinder of
unit height having a circular cross-section of radius
2. Grayscale erosions and dilations with a flat struc-
turing function can be computed very fast by using
running min/max selection algorithms [3].

The first experimental results reported in this pa-
per indicate the superiority of the proposed novel
variant of DLA, to be called Morphological Shape
Decomposition-Dynamic Link Architecture (MSD-
DLA), over the (standard) dynamic link matching
with Gabor-based feature vectors.

The outline of this paper is as follows. Facial re-
gion modeling using MSD is outlined in Section 2.
The proposed MSD-DLA is described in Section 3.
The evaluation of performance of MSD-DLA with re-
spect to its Receiver Operating Characteristic (ROC)
is treated in Section 4. Conclusions are drawn and
further research directions are indicated in Section 5.

2 FACIAL REGION MODELING USING
MORPHOLOGICAL SHAPE DECOM-
POSITION

The modeling of a grayscale facial image region
by employing morphological shape decomposition is
described in this section. To begin with let us briefly
describe a necessary preprocessing step that aims at
detecting facial regions in frontal views. A very at-
tractive approach for face detection is based on mul-
tiresolution images (also known as mosaic images)
attempting to detect a facial region at a coarse reso-
lution and subsequently to validate the outcome by
detecting facial features at the next resolution level
[11]. Towards this goal, the method employs a hi-
erarchical knowledge-based pattern recognition sys-
tem. Recently, a variant of this method has been
proposed [12]. The above-mentioned variant treats
efficiently scenes where a single person appears and
the background is fairly uniform, for the following
reasons: (a) It allows for rectangular cells in contrast
to the square cells used in [11]. (b) It is equipped
with a preprocessing step that determines an esti-
mate of the cell dimensions and the offsets so that
the mosaic model fits the face image of each person.
(c) It has very low computational demands compared
to the original algorithm [11], because the iterative
nature of the algorithm is avoided due to the prepro-
cessing step that has been employed. (d) It employs
more general rules that are close to our intuition for
a human face. By using this method, we may define
roughly a region where the face is included, and con-
trol the placement of a sparse grid over the face in

order to store a model for each person in dynamic
link matching, as is described later on.

Figure 1: Face detection results.

Figure 1 shows the results of the face detection al-
gorithm on frontal views of eight persons extracted
from the European ACTS project M2VTS database
[13]. The white overlaid rectangles correspond to
eyebrows/eyes and nostrils/nose candidates. The
black overlaid rectangles correspond to mouth candi-
dates and the white cross indicates the characteristic
bright point between the eyes.

Morphological shape decomposition is applied to
the output of the face detection algorithm shown in
Figure 1. Let us define by f(x) : D ⊆ ZZ2 → ZZ the
image at the output of the preprocessing step em-
ployed with ZZ denoting the set of integer numbers
and D being the domain of f(x). Without any loss
of generality it is assumed that the image pixel val-
ues are non-negative, i.e., f(x) ≥ 0. Let g(x) = 1,
∀x : ‖x‖ ≤ R denote the structuring function. The
value R = 2 has been used in all experiments. It is
seen that by definition, g(x) is symmetric. There-
fore, symmetric operators will not explicitly denoted
hereafter. Furthermore, it can easily be seen that
our structuring function is a cylinder of unit height
with a circular cross-section of radius 2. Given f(x)
and g(x), the grayscale dilation of the image f(x) by
the structuring function g(x) is defined as [2, 3]:

(f ⊕ g)(x) = max
z∈G, x−z∈D

{f(x − z) + g(z)} . (1)

The complementary operation, the grayscale erosion,
is defined as:

(f 	 g)(x) = min
z∈G, x+z∈D

{f(x + z) − g(z)} . (2)

The objective of shape decomposition is to decom-
pose f(x) into a sum of components, i.e.:

f(x) =
K∑

i=1

fi(x) (3)

where fi(x) denotes the i−th component that should
be a simple function. That is, it can be expressed as



follows:
fi(x) = [li ⊕ ni g] (x) (4)

where li(x) is the so called spine [3] and

ni g(x) = [g ⊕ g ⊕ · · · ⊕ g]︸ ︷︷ ︸
ni times

(x). (5)

An intuitively sound choice for n1g(x) is the maximal
function in f(x), that is, to choose n1 such that

[f 	 (n1 + 1)g] (x) < 0 ∀x ∈ D. (6)

Accordingly, the first spine is given by:

l1(x) = [f 	 n1 g] (x). (7)

Morphological shape decomposition can then be im-
plemented recursively as follows.

Step 1. Initialization: f̂0(x) = 0.

Step 2. i-th level of decomposition: Starting
with ni = 1 increment ni until

[
(f − f̂i−1) 	 (ni + 1)g

]
(x) < 0. (8)

Step 3. Calculate the i-th component by

fi(x) =

⎧⎪⎪⎨
⎪⎪⎩

[
(f − f̂i−1) 	 ni g

]
︸ ︷︷ ︸

li(x)

⊕ni g

⎫⎪⎪⎬
⎪⎪⎭

(x)

(9)

Step 4. Calculate the reconstructed image at
the i-th level of decomposition:

f̂i(x) = f̂i−1(x) + fi(x). (10)

Step 5. Let M(f − f̂i) be a measure of the ap-
proximation of the image f(x) by its recon-
struction f̂i(x) at the i-th level of decom-
position. Increment i and go to Step 2 until
i > K or M(f − f̂i−1) is sufficiently small.

Figure 2 shows the block diagram of the morpho-
logical shape decomposition. The module Compo-
nent Extraction (CE) implements the Steps 2 and
3 of the algorithm outlined above. It can easily be
seen that morphological shape decomposition is an
information-preserving shape description method.

3 COMBINED USE OF MORPHOLOG-
ICAL SHAPE DECOMPOSITION AND
DYNAMIC LINK ARCHITECTURE

Traditionally, linear methods like the Fourier
transform, the Walsh-Hadamard transform, Gaus-
sian filter banks, wavelets, Gabor elementary func-
tions have dominated thinking on algorithms for gen-
erating the information pyramid. An alternative to
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Figure 2: Block diagram of morphological shape de-
composition.

linear techniques is to use morphological shape de-
composition techniques. In this paper, we propose
the substitution of Gabor-based feature vectors used
in dynamic link matching by feature vectors that are
extracted from the reconstructed images f̂i(x) at the
successive levels of decomposition i = 1, . . . , K for
K=16. That is, the grey level information f̂i at the
node x of a sparse grid for the levels of decompo-
sition i = 1, . . . , 16 along with the grey level infor-
mation f is concatenated to form a feature vector
J(x), the so called jet, in Dynamic Link Architec-
ture (DLA) [6]: yielding the Morphological Shape
Decomposition-Dynamic Link Architecture (MSD-
DLA):

J(x) =
(
f(x), f̂1(x), . . . , f̂K(x)

)
(11)

The resulted variant of DLA is the so called Mor-
phological Shape Decomposition-Dynamic Link Ar-
chitecture (MSD-DLA). Alternatively, one may also
use the feature vector:

J′(x) =
(
f(x) − f̂K(x), f̂1(x), . . . , f̂K(x)

)
(12)

Figure 3 depicts a series of reconstructed images at
nineteen levels of decompositions for the facial image
region of a sample person from the database. The
20th image at the bottom right is the original facial
image region that is decomposed. Only the first six-
teen reconstructed images have been employed in the
dynamic link architecture.

It is seen that the approximation error is negligible
everywhere except the salient minima of the facial
region that correspond to eyes, nostrils etc. This
observation suggests that a further improvement can
be obtained by applying the same approach to the
negative of the original image so that image minima
are approximated more accurately.

Let the superscripts t and r denote a test and a
reference person (or grid) respectively. The L2 norm
between the feature vectors at the same grid node
has been used as a (signal) similarity measure, i.e.:

Sv(J(xt
i),J(xr

i )) = ‖J(xt
i) − J(xr

i )‖. (13)

As in DLA [6], the quality of a match is evaluated
by taking into account the grid deformation as well.



Figure 3: Reconstructed images at the nineteen lev-
els of the decomposition. The image at the bottom
right is the original one.

Let us denote by V the set of grid nodes. Then, an
additional cost function is used:

Se(i, j) = Se(dt
ij ,d

r
ij) = ‖dt

ij−dr
ij‖ ∀i ∈ V; j ∈ N (i)

(14)
where N (i) denotes the neighborhood of a vertex i
(e.g. a four-connected neighborhood in our case) and
dij = xi − xj . It can easily be seen that (14) does
not penalize translations of the whole graph. The
objective is to find the test grid node coordinates
{xt

i, i ∈ V} that minimize

C({xt
i}) =

∑
i∈V

{Sv(J(xt
i),J(xr

i )) +

+ λ
∑

j∈N (i)

Se(dt
ij ,d

r
ij)}. (15)

In the minimization of (15), the coarse-fine approach
proposed in [6] has been used. The reference grid
(i.e., the model grid) has been placed over the output
of face detection algorithm described in Section 2. A
sparse grid of 8 × 8 equally spaced nodes has been
employed. Figure 4 depicts the grids formed in the
procedure of matching the same person with two ref-
erence persons.

4 PERFORMANCE EVALUATION OF
MSD-DLA

The MSD-DLA has been tested on the M2VTS
database of 37 persons [13]. A reference set has been
created by choosing a frontal view of each person
from the third shot. A test set has been created by

(a) (b) (c)

(d) (e) (f)

Figure 4: Three stages of the graph matching proce-
dure: model grid, best grid for the test person after
coarse matching, best grid for the test person after
fine matching. Cases (a)–(c): The test person is dif-
ferent from the reference one. Cases (d)–(f): The
test person is identical to the reference one.

choosing another frontal or near frontal view of each
person from this shot. In this paper, we have used
solely the sum of L2 norms of feature vector differ-
ences at all grid nodes as a distance measure between
a test and a reference person. The distance for all
pairs of test and reference persons when MSD-DLA
is used is plotted in Figure 5a. For comparison pur-
poses, the same experiment has been repeated with
DLA. In the latter case, the sum of moduli of Gabor
feature vectors at the grid nodes has been used to
yield a distance between a reference and a test per-
son. The plot of distances is shown in Figure 5b. It
is clearly seen that MSD-DLA has much more min-
ima in the main diagonal than DLA. The DLA has
succeeded to identify 17 persons from 37 whereas the
MSD-DLA has succeeded to identify 31 persons from
37.

Both DLA and MSD-DLA always yield a mini-
mum value of the distance measure that has been
used irrespective of whether or not a corresponding
image of the same person is contained in the refer-
ence set. Therefore, we need to introduce a threshold
T that will permit either to accept or to reject the
outcome of the minimal distance rule. Let ti and
rj denote the i-th test and j-th reference person re-
spectively. Let Δ(ti, rj) denote their distance. Let
also N be the number of persons in the test (i.e.,
N=37). We define the false rejection rate at thresh-
old T , FRR(T ), as follows:

FRR(T ) = 1 − 1
N

card {∀i : i = arg min{Δ(ti, rj),
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Figure 5: Plots of elastic graph distances for all pairs of test and reference persons in MSD-DLA and DLA. (a)
Euclidean norm of MSD feature vectors. (b) Modulus of Gabor feature vectors.

j = 1, . . . , N} and Δ(ti, ri) ≤ T} (16)

where card{ } denotes the cardinality of a set. Ac-
cordingly, the false acceptance rate at threshold T ,
FAR(T ), is given by:

FAR(T ) =
1
N

card {∀i : k = arg min{Δ(ti, rj); j = 1,

. . . , N ; j 
= i} and Δ(ti, rk) ≤ T} . (17)

Let us also define the receiver operating characteris-
tic (ROC) of an identification technique as the plot
of FRR versus FAR with the threshold T being a
varying parameter. Ideally, we want to find a thresh-
old To such that FRR(To) → 0 and FAR(To) → 0.
What usually happens is a trade-off between FRR
and FAR. Therefore, between identification tech-
niques the smaller the area under the ROC the bet-
ter the technique is. The ROC of the MSD-DLA and
the DLA for the distance measures used is plotted in
Figure 6a. It is seen that MSD-DLA outperforms
DLA. For the same FAR=20%, the FRR for MSD-
DLA is 30% whereas the FRR for DLA is 56%. The
plots of FAR/FRR versus the threshold T are given
in Figures 6b and 6c respectively.

5 CONCLUSIONS
A novel morphological dynamic link architecture

that employs morphological shape decomposition as
feature extraction mechanism has been developed
and has been tested. The first experimental re-
sults collected are very encouraging and indicate that
the proposed method outperforms the (standard) dy-
namic link matching that is based on Gabor wavelets.
However, further experiments should be conducted
to validate the first results reported in this paper.
Furthermore, the derivation of a theoretically sound
distance measure between a pair of a test and refer-
ence person that combines signal as well as geomet-
rical distortions is another subject of future research.

References
[1] Levine, M.D., Vision in Man and Machine. New

York:McGraw-Hill, 1985.

[2] Haralick, R.M., Sternberg, S.R., and Zhuang,
X., “Image analysis using mathematical mor-
phology,” IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. PAMI-9, no. 4, pp.
532–550, July 1987.

[3] Pitas, I., and Venetsanopoulos, A.N., Nonlin-
ear Digital Filters: Principles and Applications.
Boston, MA: Kluwer Academic Publ., 1990.

[4] Pitas, I., and Venetsanopoulos, A.N., “Morpho-
logical shape decomposition,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol.
12, no. 1, pp. 38–45, January 1990.

[5] Reinhardt, J.M., and Higgins, W.E., “Efficient
morphological shape representation,” IEEE
Trans. on Image Processing, vol. 5, no. 1, pp.
89–101, January 1996.
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