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ABSTRACT

In this paper, adaptive LMS filters based on order statis-
tics employing variable step-sizes are proposed. A novel
step-size selection is developed. The performance of the
designed filters in noise suppression is compared to the
one of adaptive filters that use other step-size selection
procedures for still images. It is demonstrated by exper-
iments that the proposed step-size selection yields the
best performance for a wide range of noise types includ-
ing the Gaussian noise, the impulsive noise and the very
impulsive one.

1. INTRODUCTION

Adaptive signal processing has been an active research
topic for more than two decades. It has found numerous
applications in system identification, channel equalisa-
tion, echo cancellation etc. [1]. The most widely known
adaptive filters are the linear ones that have the form
of either finite impulse response (FIR) filters or lattice
filters. However, linear filters may not be suitable for
applications where the transmission channel is nonlinear
or the noise is impulsive or the signal is strongly non-
stationary (e.g. in image processing).

On the contrary, a multitude of nonlinear techniques
has been proved a successful alternative to the linear
techniques in all the above-mentioned cases. For a re-
view of the nonlinear filter classes the reader may con-
sult [2]. One of the best known families is based on the
order statistics [3]. It uses the concept of sample order-
ing. The power of the ordering concept is well illustrated
by the median filters which preserve the edges and are
the optimal estimators for impulsive noise. There is now
a multitude of nonlinear filters based on data ordering.
Among them are the L-filters whose output is defined as
a linear combination of the order statistics of the input
sequence [4].

It is well-known that digital image filtering techniques
must take into account the local image content (i.e., the
local statistics), because image statistics vary through-
out an image. It has been proved both in theory and
in practice that adaptive techniques can cope with non-
stationary and/or time-varying signals. In this paper we
deal with adaptive filters whose coefficients are chosen
by employing the Least Mean Squares (LMS) iterative
algorithm for the minimisation of the mean squared er-
ror (MSE) between the filter output and the desired re-
sponse. Several authors have used the LMS algorithm

to design nonlinear filters. For example, the LMS algo-
rithm has been extensively used in the design of L-filters
[5, 6, 7, 8]. A survey on adaptive order statistic filters
can also be found in [9]. Adaptive LMS L-filters that
employ variable step-sizes are designed and their perfor-
mance in noise suppression is compared in the case of still
images. A variable step-size selection mechanism that is
reminiscent to the one proposed in [10] is derived. How-
ever, it is worth noting that although our approach is
inspired by the method discussed in [10], the details of
the selection algorithm are new. It is found that such a
variable step-size selection can accelerate the convergence
of the filter coefficients towards the optimal ones, espe-
cially at the beginning of the filtering session, without
deteriorating the noise reduction achieved by the filter
at convergence (that is, the mean squared error at con-
vergence). Furthermore, the proposed variable step-size
selection algorithm yields always a stable adaptive filter-
ing algorithm which is not the case with normalised LMS
(NLMS) algorithm [8], or the method proposed in [10].

2. ADAPTIVE LMS L-FILTERS WITH
NON-HOMOGENEOUS STEP-SIZES

Let the observed image z(k) be expressed as the sum of
a noise-free image d(k) plus zero-mean two-dimensional
additive white noise, i.e., (k) = d(k) + (k) where k =
(k, 1) denotes the pixel coordinates. In image processing,
a neighbourhood is defined around each pixel k. Among
the several neighbourhoods (i.e., filter masks, e.g. cross,
x-shape, square, circle) that are used in digital image
processing [2], we shall rely on the square window of di-
mensions (2v + 1) x (2v + 1). Let N = (2v + 1)%. Since
we intend to apply a filter based on sample ordering let
us rearrange the (2v + 1) x (2v + 1) filter window in a
lexicographic order (i.e., row by row) to a N x 1 vector
x(k). If K and £ denote the image rows and columns
respectively, depending on the image scanning method,
each pixel (k,1), k=1,...,K, 1 =1,...,L can be repre-
sented by a single running index n. Henceforth, a one-
dimensional (1-D) notation is adopted for simplicity.
Let x,(n) be the ordered input vector at pixel k
given by x,(n) = (z(l)(n),z(g)(n), . ,I(N)(n))T where
z1y(n) < zpe)(n) < ... < z(n)(n) denote the order
statistics in the N x 1 input vector. The output of the
L-filter is defined by y(n) = a” x,(n) where a is the L-
filter coefficient vector. The coefficient vector that min-



imises the MSE between the filtered output and the de-
sired response is simply given by the Wiener solution, i.e.:
a, = R;rlpT. R, =E [xr(n) xTT(n)] is the correlation
matrix of the observed ordered image pixel values and
pr = E[d(n) x,(n)] denotes the cross-correlation vector
between the ordered input vector x,(n) and the desired
image pixel value d(n). If instantaneous estimates for
R., and p, are used, then the LMS updating equation
for the filter coefficients results in:

a(n+1) = a(n) + pe(n) x.(n) (1)

with e(n) denoting the estimation error at pixel n, i.e.,
e(n) = d(n) — y(n). p is the adaptation step-size that
should satisfy the inequality 0 < p < ﬁ so that the
average MSE converges to a steady-state value [1] where
tr[] stands for the trace of the bracketed matrix. We
have also used the identity tr[R.,] = tr[R], where R =
E[x(n)x" (n)] is the correlation matrix of the input ob-
servations.

It is well known that the slow convergence rate of the
LMS algorithm compared to the convergence rate of the
recursive least squares (RLS) algorithm is attributed to
the fact that only one parameter, the step-size u, controls
the convergence of all the filter coefficients. On the con-
trary, in the case of the RLS algorithm, the convergence
of each filter coefficient is controlled by a separate ele-
ment of the Kalman gain vector [1]. In addition, at each
iteration, the Kalman gain vector is updated utilising all
the information contained in the input data, extending
back to the algorithm initialisation. This observation led
us to employ different step-size parameters for the vari-
ous LMS L-filter coefficients in their updating equations,
ie.

a(n+1) =a(n) + e(n) M x,(n) (2)

where M is the following diagonal matrix M = diag[u1,

..,un]. In the following, a design procedure that en-

ables the selection of py;, i = 1,..., N is developed. The

discussion has been motivated by the step-size selection

proposed in [10]. However, the adaptation of the method
to the problem under study is novel.

Let R,, = UAU” where U = {U;;} is the modal
matrix of R,, whose j-th column is the eigenvector as-
sociated with the j-th eigenvalue of R,, and A is a di-
agonal matrix composed of the eigenvalues of R,, . Let
eq.(n) = a(n) — a, denote the coefficient-error vector at
n. It is more convenient to work with the transformed
coeficient-error vector at iteration n, £(n) = UTe,(n).
Following similar lines with [10] it can be shown that:

En+1)=1-MA)(n) ; M=U'MU (3)

where T is the N x N identity matrix. It can be easily
seen that M is no more diagonal. Its ij-element is:

N

fij = ZukUkz‘Ukj- (4)
k=1

The evolution of the coefficient-error covariance matrix
results in [1, 10]:

K(n) — MAK(n) — K(n)AM + MAtr [A
K(n)]| M + JuinMAM (5)

K(n+1) =

where Jnin denotes the minimum MSE. For a moment,
we shall assume that Eleq,eq;] = 07,di; with 6;; denot-
ing Kronecker delta. Such an assumption implies that

K(n) = 02 1. If we also assume that M = uI, then (5)
can be simplified to a more tractable form than (5), i.e.:

K(n+1) = K(n)(I-2AM) + tr [AK(n)] MAM +

JminMAM- (6)

In addition, we shall assume that the eigenvalues of R,
are equal. Clearly, such an assumption does not hold for
the correlation matrix of the order statistics. It can be
considered only as a design assumption. Then, the step-
sizes can be chosen so that the excess mean squared error
E[Jex(a(n))] = tr[AK(n)] is minimised. Such a minimi-
sation problem has been solved by Bershad [11] when
(6) holds and all the eigenvalues are equal. To minimise
E[Jex(a(n))] the diagonal elements of K(n) should be
minimised. Following similar reasoning with [10] it can
1

be shown that fi;; should be chosen as fi; = TR T
1

R In the remaining analysis, all the assumptions that
yield (6) will be dropped out. By substituting f;; into

(4) we obtain:

;%&@=E%T (7)

One may write N equations like (7) for 4 = 1,..., N.
Then, the set of IV equations can be solved for ;. How-
ever, the solution of the set of equations does not guar-
antee that each py is less than 1/tr[R]. On the contrary,
it is trivial to show that the set of equations (7) implies:

ol N
;llk:m- (8)

Accordingly, we shall follow a different approach. Let us
assume that the step-size pi which controls the adapta-
tion of coefficient a(n) (i.e., the weight of the k-th order
statistic z(x)(n)) is given by px = f(pr1, - - -5 fkis- - HeN)
where f(-) stands for an appropriate function and each
ki is chosen by taking into consideration only the i-th
eigenvector of R, . Let us denote by Ry, the matrix:

Rk:{RZmIJ} 27]:175k (9)

Each pr; can be defined as follows:

_ alR)
o tr[Rk]

tki = Gk Hmin; ; Gk (10)

By substituting (10) into (7) we obtain:

Pmin; = (trZ[R]Z t:{;’f}g}) ) (11)

k=1
Accordingly,

U

N 72 -1 .
uh:{(MMHmuZH“@J =y S oy

ﬁ otherwise.
(12)
Having computed pu;, the step-size pr can be obtained,

for example, by computing the average value of up;:

N
1
e = Zﬂki- (13)
i=1



The major difficulties of the variable step-size selection
analysed above are the following: (i) It requires the com-
putation of the eigenvalues and eigenvectors of the cor-
relation matrix at every image pixel. Therefore, it in-
creases dramatically the computational complexity of the
algorithm. (ii) There is no guarantee that the pimin; de-
termined in (11) yields always a stable filter operation.
We have to check if pmin; < 1/tr[R] before accepting
the value computed in (11). It has been found that the
most crucial term in the variable step-size selection algo-
rithm proposed is the ratio Gj. Accordingly, we propose
to compute a sequence of variable step-sizes by employ-
ing a run-time estimate of G} and a constant step-size
po < 1/tr[R] (e.g. po = 1078) as follows:

Mk (n) = { Gk (n) Ho if 223 (n) < MHmax

pb/ (xT(n)x(n)) otherwise (14)

where pimax 1S an upper bound on the variation of u, e.g.
1076, /zéj is a positive real number less than 1 and Gy (n)
is an estimate for the ratio Gy for every image pixel that
is computed by:

: YL, Qiln)

Gr(n = == 15
= (15)
Qitn) = 3wl (), n=N+1,..(16)

Obviously, Qi(n) can be computed recursively.

3. EXPERIMENTAL RESULTS

The following quantitative criteria are considered in order
to quantify the quality of filtering: (i) the Noise Reduc-
tion index (NR):
K c .
Zk:l Zl:l(m(k7 l) — d(k: l))z
K c ;
2oiet 2 (kD) —d(k, 1))

and the Mean-Squared Error (MSE):

NR = 10log (17)

MSE = & ; ;(d(k, Dy D) (18)

In (17)-(18), d(k,1) denotes the noise-free image, x(k, 1) is
corrupted image and y(k, 1) is the filtered image. K and £
are the number of image rows and columns, respectively.
The experiments are performed using a filter window size
of 3 x 3.

Subsequently, the performance of the variable step-
size selection algorithm proposed in Section 2 is studied.
First, we compare the performance of adaptive L-filters
that employ the following step-size selections: (i) con-
stant step-size (po = 1078), (ii) the normalised LMS al-
gorithm [8], (iii) the algorithm proposed in [10], and (iv)
the proposed algorithm. A noisy “Airfield” [12] image
produced by adding mixed Gaussian noise having zero
mean and standard deviation equal to 50 and impulsive
noise having probability of impulse occurrence 10% with
an equal percentage of positive and negative impulses
has been used. The initial filter coefficients are set equal
to zero. We shall also assume that the noise-free image
is available. Performance results have been obtained ei-
ther during the adaptation by using the coefficients deter-
mined at each image pixel or by using a set of coefficients

that is produced by averaging the filter coefficients com-
puted in the last image row throughout the entire image.
For comparison purposes the same figures of merit for
median filter are also included in Table 1. By inspecting
the entries of Table 1 it is found that all step-size se-
lection algorithms provide almost the same results with
respect to the quantitative criteria computed. However,
the averaged filter coefficients in the last image row when
the proposed algorithm is applied yield the best results.

As has already been explained, the motivation for in-
troducing a variable step-size selection algorithm is in
accelerating the convergence rate. This is clearly seen by
examining the learning curves in Figure 1. Each plot rep-
resents an approximation of the ensemble-averaged learn-
ing curve of each adaptive L-filter under study for the
first five rows of the image. Each row corresponds to 510
samples. It has been obtained following the procedure
described in [1]. That is, the squared norm of the esti-
mation error e(n) has been computed at each image pixel.
This experiment has been repeated 100 times, each time
using an independent realization of the process {n(n)}.
The averaged squared norm of the estimation error is
then determined by computing the ensemble average of
e(n) over the 100 independent trials of the experiment.
It is evident that the rate of convergence for the adaptive
L-filter that employs the proposed step-size selection al-
gorithm (Figure 1(b)) is faster than the corresponding
rate of the adaptive L-filter with a constant step-size
po = 1078 (Figure 1(a)). The rate of convergence of
the adaptive L-filter with the proposed step-size selec-
tion algorithm is almost identical to the one that employs
the method proposed in [10] (Figure 1(c)). However, the
proposed method does not rely on eigenvalue-eigenvector
computations. It is seen that the normalised LMS L-
filter achieves the fastest initial rate of convergence (Fig-
ure 1(d)). Furthermore, large errors are observed at the
beginning of each row which is an undesirable effect. It
is worth noting that this type of algorithm may yield
bias in estimating the mean of the output which is not
the case with the proposed algorithm. Figures 2(a) and
2(b) show the variation of the step-size at the last pixel of
each row along all image rows for the proposed algorithm
and the algorithm in [10], respectively.

The last experiment in this set aims at studying the
dependence of adaptive L-filter performance on the noise-
free image that is used as desired signal when several
step-size selection algorithms are employed. Towards
this goal we split each filtering procedure in two sessions,
namely, the training session and the test session. A dif-
ferent pair of noisy and noise-free images is used in the
training and in the test session. More specifically, in the
training session, a pair of images originated from image
“Bridge” has been used while a pair of images originated
from image “Airfield” has been used in the test session.
The noisy images in both sessions have been corrupted by
the same kind of noise. All images have been extracted
from the TUT database [12]. The objective in the train-
ing phase is to determine a set of L-filter coefficients by
averaging those coeflicients found at the last image row.
This set of L-filter coefficients is used subsequently in
the test session. Moreover, we have tested several kinds
of noise that yield the same SNR in the noisy input im-
age. Table 2 summarises the M SFE found in each case
examined. By inspecting Table 2, it is seen that the per-
formance of the adaptive L-filters under study is almost
identical for very impulsive and impulsive noise. For in-



Table 1: Performance indices achieved by adaptive L-filters that employ different step-size selections in still image

filtering.

Step-size Running coefficients Averaged coefficients
selection NR (indB) | MSE [ NR(indB) | MSE
Constant 8.140 586.885 8.098 592.563
Normalised LMS 7.974 609.755 8.233 574.446
[10] 8.136 587.360 8.231 574.646
Proposed 8.131 588.147 8.281 568.107
Median filter 7.446 688.545

Table 2: Dependence of adaptive L-filter performance
on the noise-free image that is used as desired signal
when several step-size selection algorithms are employed.
Training image: “Bridge”. Test image: “Airfield”. SNR
in the noisy input image 9 dB in all cases.

| Step-size selection/Filter | Noise Type [ MSE |

Median filter very impulsive | 140.879
Normalised LMS 152.867
Constant step-size 149.425
[10] 149.757
Proposed 146.496
Median filter impulsive 170.913
Normalised LMS 230.033
Constant step-size 201.634
[10] 188.513
Proposed 182.166
Median filter Gaussian 207.794
Normalised LMS 622.438
Constant step-size 195.056
[10] 194.056
Proposed 192.908

put images with poor quality (e.g. SNR 3 dB) the maxi-
mum gain in the SNR at the output is 0.5 dB. For Gaus-
sian noise, the maximum gain in the SNR at the output
is approximately 1 dB. By considering the entry for the
normalised LMS L-filter in the case of Gaussian noise it
becomes evident that the filter results in a significantly
biased estimate of the mean of the output image. This
bias is measured and found equal to 30.38 which mani-
fests the strong dependence of this filter on the noise-free
signal that is used to yield the filter coefficients. Such
a conclusion is in par with the experimental results re-
ported in [8]. For comparison purposes the M SE in the
output of the median filter is also included in Table 2.

4. CONCLUSIONS

The use of adaptive nonlinear filters based on order statis-
tics with variable step-sizes has been examined in this
paper. An LMS adaptation algorithm was used for the
adaptation of the L-filter coefficients. A variable step-
size selection algorithm has been proposed and its per-
formance has been studied. It has been shown that such
a selection algorithm can accelerate the rate of conver-
gence in the first image rows. The proposed algorithm
has an almost identical performance to the method pro-
posed in [10]. However, no eigenvector/eigenvalue com-
putations are needed in our framework. Moreover, it has
been found that the proposed algorithm yields an adap-
tive L-filter that does not depend on the desired image
used when the filter coefficients are determined. This is

not always the case with the normalised LMS L-filter.
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Figure 1: Learning curves for several adaptive L-filters with different step-size selection algorithms: (a) Constant step-

size po = 1078, (b) Proposed step-size selection. (c) Non-homogeneous step-size selection proposed by Chen and Arce.
(d) Normalised LMS L-filter.
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Figure 2: Variation of the step-size at the last pixel of each row along all image rows. (a) Proposed step-size selection.
(b) Non-homogeneous step-size selection proposed by Chen and Arce.



