
ADAPTIVE LMS ORDER STATISTIC FILTERS WITH VARIABLESTEP-SIZESC. Kotropoulos S. Tsekeridou M. Gabraniy I. PitasDepartment of Informatics, Aristotle University of ThessalonikiBox 451, Thessaloniki 540 06, GREECE.E-mail: fcostas, sofia, pitasg@zeus.csd.auth.gry Department of Electrical and Computer Engineering, Drexel University,32nd and Chestnut Streets, Philadelphia, PA 19104, U.S.A.E-mail: maria@cbis.ece.drexel.eduABSTRACTIn this paper, adaptive LMS �lters based on order statis-tics employing variable step-sizes are proposed. A novelstep-size selection is developed. The performance of thedesigned �lters in noise suppression is compared to theone of adaptive �lters that use other step-size selectionprocedures for still images. It is demonstrated by exper-iments that the proposed step-size selection yields thebest performance for a wide range of noise types includ-ing the Gaussian noise, the impulsive noise and the veryimpulsive one. 1. INTRODUCTIONAdaptive signal processing has been an active researchtopic for more than two decades. It has found numerousapplications in system identi�cation, channel equalisa-tion, echo cancellation etc. [1]. The most widely knownadaptive �lters are the linear ones that have the formof either �nite impulse response (FIR) �lters or lattice�lters. However, linear �lters may not be suitable forapplications where the transmission channel is nonlinearor the noise is impulsive or the signal is strongly non-stationary (e.g. in image processing).On the contrary, a multitude of nonlinear techniqueshas been proved a successful alternative to the lineartechniques in all the above-mentioned cases. For a re-view of the nonlinear �lter classes the reader may con-sult [2]. One of the best known families is based on theorder statistics [3]. It uses the concept of sample order-ing. The power of the ordering concept is well illustratedby the median �lters which preserve the edges and arethe optimal estimators for impulsive noise. There is nowa multitude of nonlinear �lters based on data ordering.Among them are the L-�lters whose output is de�ned asa linear combination of the order statistics of the inputsequence [4].It is well-known that digital image �ltering techniquesmust take into account the local image content (i.e., thelocal statistics), because image statistics vary through-out an image. It has been proved both in theory andin practice that adaptive techniques can cope with non-stationary and/or time-varying signals. In this paper wedeal with adaptive �lters whose coe�cients are chosenby employing the Least Mean Squares (LMS) iterativealgorithm for the minimisation of the mean squared er-ror (MSE) between the �lter output and the desired re-sponse. Several authors have used the LMS algorithm

to design nonlinear �lters. For example, the LMS algo-rithm has been extensively used in the design of L-�lters[5, 6, 7, 8]. A survey on adaptive order statistic �lterscan also be found in [9]. Adaptive LMS L-�lters thatemploy variable step-sizes are designed and their perfor-mance in noise suppression is compared in the case of stillimages. A variable step-size selection mechanism that isreminiscent to the one proposed in [10] is derived. How-ever, it is worth noting that although our approach isinspired by the method discussed in [10], the details ofthe selection algorithm are new. It is found that such avariable step-size selection can accelerate the convergenceof the �lter coe�cients towards the optimal ones, espe-cially at the beginning of the �ltering session, withoutdeteriorating the noise reduction achieved by the �lterat convergence (that is, the mean squared error at con-vergence). Furthermore, the proposed variable step-sizeselection algorithm yields always a stable adaptive �lter-ing algorithm which is not the case with normalised LMS(NLMS) algorithm [8], or the method proposed in [10].2. ADAPTIVE LMS L-FILTERS WITHNON-HOMOGENEOUS STEP-SIZESLet the observed image x(k) be expressed as the sum ofa noise-free image d(k) plus zero-mean two-dimensionaladditive white noise, i.e., x(k) = d(k) + �(k) where k =(k; l) denotes the pixel coordinates. In image processing,a neighbourhood is de�ned around each pixel k. Amongthe several neighbourhoods (i.e., �lter masks, e.g. cross,x-shape, square, circle) that are used in digital imageprocessing [2], we shall rely on the square window of di-mensions (2� + 1)� (2� + 1). Let N = (2� + 1)2. Sincewe intend to apply a �lter based on sample ordering letus rearrange the (2� + 1) � (2� + 1) �lter window in alexicographic order (i.e., row by row) to a N � 1 vectorx(k). If K and L denote the image rows and columnsrespectively, depending on the image scanning method,each pixel (k; l), k = 1; : : : ;K, l = 1; : : : ;L can be repre-sented by a single running index n. Henceforth, a one-dimensional (1-D) notation is adopted for simplicity.Let xr(n) be the ordered input vector at pixel kgiven by xr(n) = �x(1)(n); x(2)(n); : : : ; x(N)(n)�T wherex(1)(n) � x(2)(n) � : : : � x(N)(n) denote the orderstatistics in the N � 1 input vector. The output of theL-�lter is de�ned by y(n) = aT xr(n) where a is the L-�lter coe�cient vector. The coe�cient vector that min-



imises the MSE between the �ltered output and the de-sired response is simply given by theWiener solution, i.e.:ao = R�1xr pr. Rxr = E �xr(n) xTr (n)� is the correlationmatrix of the observed ordered image pixel values andpr = E[d(n) xr(n)] denotes the cross-correlation vectorbetween the ordered input vector xr(n) and the desiredimage pixel value d(n). If instantaneous estimates forRxr and pr are used, then the LMS updating equationfor the �lter coe�cients results in:a(n+ 1) = a(n) + � e(n) xr(n) (1)with e(n) denoting the estimation error at pixel n, i.e.,e(n) = d(n) � y(n). � is the adaptation step-size thatshould satisfy the inequality 0 < � < 2tr[R] so that theaverage MSE converges to a steady-state value [1] wheretr[] stands for the trace of the bracketed matrix. Wehave also used the identity tr[Rxr ] = tr[R], where R =E[x(n)xT (n)] is the correlation matrix of the input ob-servations.It is well known that the slow convergence rate of theLMS algorithm compared to the convergence rate of therecursive least squares (RLS) algorithm is attributed tothe fact that only one parameter, the step-size �, controlsthe convergence of all the �lter coe�cients. On the con-trary, in the case of the RLS algorithm, the convergenceof each �lter coe�cient is controlled by a separate ele-ment of the Kalman gain vector [1]. In addition, at eachiteration, the Kalman gain vector is updated utilising allthe information contained in the input data, extendingback to the algorithm initialisation. This observation ledus to employ di�erent step-size parameters for the vari-ous LMS L-�lter coe�cients in their updating equations,i.e.: a(n+ 1) = a(n) + e(n)Mxr(n) (2)where M is the following diagonal matrix M = diag[�1,: : : ; �N ]. In the following, a design procedure that en-ables the selection of �i, i = 1; : : : ; N is developed. Thediscussion has been motivated by the step-size selectionproposed in [10]. However, the adaptation of the methodto the problem under study is novel.Let Rxr = U�UT where U = fUijg is the modalmatrix of Rxr whose j-th column is the eigenvector as-sociated with the j-th eigenvalue of Rxr and � is a di-agonal matrix composed of the eigenvalues of Rxr . Letea(n) = a(n) � ao denote the coe�cient-error vector atn. It is more convenient to work with the transformedcoe�cient-error vector at iteration n, �(n) = UTea(n).Following similar lines with [10] it can be shown that:�(n+ 1) = (I� M̂�)�(n) ; M̂ = UTMU (3)where I is the N � N identity matrix. It can be easilyseen that M̂ is no more diagonal. Its ij-element is:�̂ij = NXk=1 �kUkiUkj : (4)The evolution of the coe�cient-error covariance matrixresults in [1, 10]:K(n+ 1) = K(n)� M̂�K(n)�K(n)�M̂+ M̂�tr [�K(n)] M̂+ JminM̂�M̂ (5)where Jmin denotes the minimum MSE. For a moment,we shall assume that E[eaieaj ] = �2ea�ij with �ij denot-ing Kronecker delta. Such an assumption implies that

K(n) = �2eaI. If we also assume that M̂ = �I, then (5)can be simpli�ed to a more tractable form than (5), i.e.:K(n+ 1) = K(n) �I� 2�M̂�+ tr [�K(n)] M̂�M̂+JminM̂�M̂: (6)In addition, we shall assume that the eigenvalues of Rxrare equal. Clearly, such an assumption does not hold forthe correlation matrix of the order statistics. It can beconsidered only as a design assumption. Then, the step-sizes can be chosen so that the excess mean squared errorE[Jex(a(n))] = tr[�K(n)] is minimised. Such a minimi-sation problem has been solved by Bershad [11] when(6) holds and all the eigenvalues are equal. To minimiseE[Jex(a(n))] the diagonal elements of K(n) should beminimised. Following similar reasoning with [10] it canbe shown that �̂ii should be chosen as �̂ii = 1tr[Rxr ] =1tr[R] . In the remaining analysis, all the assumptions thatyield (6) will be dropped out. By substituting �̂ii into(4) we obtain: NXk=1 �kU2ki = 1tr[R] : (7)One may write N equations like (7) for i = 1; : : : ; N .Then, the set of N equations can be solved for �k. How-ever, the solution of the set of equations does not guar-antee that each �k is less than 1=tr[R]. On the contrary,it is trivial to show that the set of equations (7) implies:NXk=1 �k = Ntr[R] : (8)Accordingly, we shall follow a di�erent approach. Let usassume that the step-size �k which controls the adapta-tion of coe�cient ak(n) (i.e., the weight of the k-th orderstatistic x(k)(n)) is given by �k = f(�k1; : : : ; �ki; : : : ; �kN )where f(�) stands for an appropriate function and each�ki is chosen by taking into consideration only the i-theigenvector of Rxr . Let us denote by Rk the matrix:Rk = fRxr ;ijg i; j = 1; : : : ; k: (9)Each �ki can be de�ned as follows:�ki = Gk �mini ; Gk = tr[R]tr[Rk] (10)By substituting (10) into (7) we obtain:�mini =  tr2[R] NXk=1 U2kitr[Rk]!�1 : (11)Accordingly,�ki = ( �tr[R]tr[Rk]PNl=1 U2litr[Rl]��1 =  if  � 1tr[R] ,1tr[R] otherwise.(12)Having computed �ki, the step-size �k can be obtained,for example, by computing the average value of �ki:�k = 1N NXi=1 �ki: (13)



The major di�culties of the variable step-size selectionanalysed above are the following: (i) It requires the com-putation of the eigenvalues and eigenvectors of the cor-relation matrix at every image pixel. Therefore, it in-creases dramatically the computational complexity of thealgorithm. (ii) There is no guarantee that the �mini de-termined in (11) yields always a stable �lter operation.We have to check if �mini < 1=tr[R] before acceptingthe value computed in (11). It has been found that themost crucial term in the variable step-size selection algo-rithm proposed is the ratio Gk. Accordingly, we proposeto compute a sequence of variable step-sizes by employ-ing a run-time estimate of Gk and a constant step-size�0 < 1=tr[R] (e.g. �0 = 10�8) as follows:�k(n) = � Ĝk(n) �0 if �k(n) < �max�00= �xT (n)x(n)� otherwise (14)where �max is an upper bound on the variation of �, e.g.10�6, �00 is a positive real number less than 1 and Ĝk(n)is an estimate for the ratio Gk for every image pixel thatis computed by:Ĝk(n) = PNi=1Qi(n)Pki=1Qi(n) (15)Qi(n) = 1n�N nXj=N x2(i)(j); n = N + 1; : : :(16)Obviously, Qi(n) can be computed recursively.3. EXPERIMENTAL RESULTSThe following quantitative criteria are considered in orderto quantify the quality of �ltering: (i) the Noise Reduc-tion index (NR):NR = 10 logPKk=1PLl=1(x(k; l)� d(k; l))2PKk=1PLl=1(y(k; l)� d(k; l))2 (17)and the Mean-Squared Error (MSE):MSE = 1KL KXk=1 LXl=1 (d(k; l)� y(k; l))2 (18)In (17)-(18), d(k; l) denotes the noise-free image, x(k; l) iscorrupted image and y(k; l) is the �ltered image. K and Lare the number of image rows and columns, respectively.The experiments are performed using a �lter window sizeof 3� 3.Subsequently, the performance of the variable step-size selection algorithm proposed in Section 2 is studied.First, we compare the performance of adaptive L-�ltersthat employ the following step-size selections: (i) con-stant step-size (�0 = 10�8), (ii) the normalised LMS al-gorithm [8], (iii) the algorithm proposed in [10], and (iv)the proposed algorithm. A noisy \Air�eld" [12] imageproduced by adding mixed Gaussian noise having zeromean and standard deviation equal to 50 and impulsivenoise having probability of impulse occurrence 10% withan equal percentage of positive and negative impulseshas been used. The initial �lter coe�cients are set equalto zero. We shall also assume that the noise-free imageis available. Performance results have been obtained ei-ther during the adaptation by using the coe�cients deter-mined at each image pixel or by using a set of coe�cients

that is produced by averaging the �lter coe�cients com-puted in the last image row throughout the entire image.For comparison purposes the same �gures of merit formedian �lter are also included in Table 1. By inspectingthe entries of Table 1 it is found that all step-size se-lection algorithms provide almost the same results withrespect to the quantitative criteria computed. However,the averaged �lter coe�cients in the last image row whenthe proposed algorithm is applied yield the best results.As has already been explained, the motivation for in-troducing a variable step-size selection algorithm is inaccelerating the convergence rate. This is clearly seen byexamining the learning curves in Figure 1. Each plot rep-resents an approximation of the ensemble-averaged learn-ing curve of each adaptive L-�lter under study for the�rst �ve rows of the image. Each row corresponds to 510samples. It has been obtained following the proceduredescribed in [1]. That is, the squared norm of the esti-mation error e(n) has been computed at each image pixel.This experiment has been repeated 100 times, each timeusing an independent realization of the process f�(n)g.The averaged squared norm of the estimation error isthen determined by computing the ensemble average ofe(n) over the 100 independent trials of the experiment.It is evident that the rate of convergence for the adaptiveL-�lter that employs the proposed step-size selection al-gorithm (Figure 1(b)) is faster than the correspondingrate of the adaptive L-�lter with a constant step-size�0 = 10�8 (Figure 1(a)). The rate of convergence ofthe adaptive L-�lter with the proposed step-size selec-tion algorithm is almost identical to the one that employsthe method proposed in [10] (Figure 1(c)). However, theproposed method does not rely on eigenvalue-eigenvectorcomputations. It is seen that the normalised LMS L-�lter achieves the fastest initial rate of convergence (Fig-ure 1(d)). Furthermore, large errors are observed at thebeginning of each row which is an undesirable e�ect. Itis worth noting that this type of algorithm may yieldbias in estimating the mean of the output which is notthe case with the proposed algorithm. Figures 2(a) and2(b) show the variation of the step-size at the last pixel ofeach row along all image rows for the proposed algorithmand the algorithm in [10], respectively.The last experiment in this set aims at studying thedependence of adaptive L-�lter performance on the noise-free image that is used as desired signal when severalstep-size selection algorithms are employed. Towardsthis goal we split each �ltering procedure in two sessions,namely, the training session and the test session. A dif-ferent pair of noisy and noise-free images is used in thetraining and in the test session. More speci�cally, in thetraining session, a pair of images originated from image\Bridge" has been used while a pair of images originatedfrom image \Air�eld" has been used in the test session.The noisy images in both sessions have been corrupted bythe same kind of noise. All images have been extractedfrom the TUT database [12]. The objective in the train-ing phase is to determine a set of L-�lter coe�cients byaveraging those coe�cients found at the last image row.This set of L-�lter coe�cients is used subsequently inthe test session. Moreover, we have tested several kindsof noise that yield the same SNR in the noisy input im-age. Table 2 summarises the MSE found in each caseexamined. By inspecting Table 2, it is seen that the per-formance of the adaptive L-�lters under study is almostidentical for very impulsive and impulsive noise. For in-



Table 1: Performance indices achieved by adaptive L-�lters that employ di�erent step-size selections in still image�ltering. Step-size Running coe�cients Averaged coe�cientsselection NR (in dB) MSE NR (in dB) MSEConstant 8.140 586.885 8.098 592.563Normalised LMS 7.974 609.755 8.233 574.446[10] 8.136 587.360 8.231 574.646Proposed 8.131 588.147 8.281 568.107Median �lter 7.446 688.545Table 2: Dependence of adaptive L-�lter performanceon the noise-free image that is used as desired signalwhen several step-size selection algorithms are employed.Training image: \Bridge". Test image: \Air�eld". SNRin the noisy input image 9 dB in all cases.Step-size selection/Filter Noise Type MSEMedian �lter very impulsive 140.879Normalised LMS 152.867Constant step-size 149.425[10] 149.757Proposed 146.496Median �lter impulsive 170.913Normalised LMS 230.033Constant step-size 201.634[10] 188.513Proposed 182.166Median �lter Gaussian 207.794Normalised LMS 622.438Constant step-size 195.056[10] 194.056Proposed 192.908put images with poor quality (e.g. SNR 3 dB) the maxi-mum gain in the SNR at the output is 0.5 dB. For Gaus-sian noise, the maximum gain in the SNR at the outputis approximately 1 dB. By considering the entry for thenormalised LMS L-�lter in the case of Gaussian noise itbecomes evident that the �lter results in a signi�cantlybiased estimate of the mean of the output image. Thisbias is measured and found equal to 30.38 which mani-fests the strong dependence of this �lter on the noise-freesignal that is used to yield the �lter coe�cients. Sucha conclusion is in par with the experimental results re-ported in [8]. For comparison purposes the MSE in theoutput of the median �lter is also included in Table 2.4. CONCLUSIONSThe use of adaptive nonlinear �lters based on order statis-tics with variable step-sizes has been examined in thispaper. An LMS adaptation algorithm was used for theadaptation of the L-�lter coe�cients. A variable step-size selection algorithm has been proposed and its per-formance has been studied. It has been shown that sucha selection algorithm can accelerate the rate of conver-gence in the �rst image rows. The proposed algorithmhas an almost identical performance to the method pro-posed in [10]. However, no eigenvector/eigenvalue com-putations are needed in our framework. Moreover, it hasbeen found that the proposed algorithm yields an adap-tive L-�lter that does not depend on the desired imageused when the �lter coe�cients are determined. This is
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(c) (d)Figure 1: Learning curves for several adaptive L-�lters with di�erent step-size selection algorithms: (a) Constant step-size �0 = 10�8. (b) Proposed step-size selection. (c) Non-homogeneous step-size selection proposed by Chen and Arce.(d) Normalised LMS L-�lter.
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(a) (b)Figure 2: Variation of the step-size at the last pixel of each row along all image rows. (a) Proposed step-size selection.(b) Non-homogeneous step-size selection proposed by Chen and Arce.


