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Abstract

Several adaptive LMS L-filters, both constrained and
unconstrained ones, are developed for noise suppression
in images and being compared in this paper. First, the
location-invariant LMS L-filter for a nonconstant signal
corrupted by zero-mean additive white noise is derived.
Subsequently, the normalized and the sign LMS L-filters
are studied. It is shown that both these filters turn to be
identical for a certain choice of the adaptation step-size.
A modified LMS L-filter with nonhomogeneous step-sizes
is also proposed in order to accelerate the rate of conver-
gence of the adaptive L-filter. Finally, a signal-dependent
adaptive filter structure is developed to allow a separate
treatment of the pixels that are close to the edges from the
pixels that belong to homogeneous image regions.

1 Introduction

A multitude of nonlinear techniques has been proven
a successful alternative to the linear techniques in adap-
tive signal processing. For a review of the nonlinear filter
classes the reader may consult [1]. One of the best known
families is based on the order statistics. It uses the concept
of sample ordering. There is now a multitude of nonlin-
ear filters based on data ordering. Among them are the
L-filters whose output is defined as a linear combination
of the order statistics of the input sequence. Recently, the
adaptation of the coefficients employed in order statistic fil-
ters by using linear adaptive signal processing techniques
has received much attention in the literature [2, 3, 4, 5].
In this paper, we shall confine ourselves to the design of
adaptive L-filters.

The main contribution of this paper is in the design and
comparison of several adaptive L-filters for noise suppres-
sion in images. The properties of the developed adaptive
L-filters are studied as well. Another primary goal is to
establish links between the adaptive L-filters under study
and other algorithms developed elsewhere.

2 Location-invariant LMS L-filter

In this section, the location-invariant LMS L-filter for a
nonconstant signal corrupted by zero-mean additive white
noise is derived. Let us consider that the observed signal
x(k) can be expressed as a sum of an arbitrary signal s(k)
plus zero-mean additive white noise, i.e., x(k) = s(k) +
n(k). Let xr(k) be the ordered tap-input vector at time
instant k given by

xr(k) =
(
x(1)(k), x(2)(k), . . . , x(N)(k)

)T
(1)

where x(i)(k) denotes the i-th largest observation in the
N × 1 tap-input vector

x(k) =
(
x(k − N − 1

2
), . . . , x(k), . . . , x(k +

N − 1

2
)
)T

(2)
The length of the tap-input vector N is assumed to be odd.
We are seeking the L-filter whose output at time instant k

y(k) = aT (k) xr(k) (3)

minimizes the MSE J(k) = E
[
(y(k) − s(k))2

]
between the

filter output y(k) and the desired response s(k) subject to
the constraint

1T
N a(k) = 1 (4)

where 1N is the N × 1 unitary vector, i.e., 1N =
(1, 1, . . . , 1)T . The constraint (4) ensures that the fil-
ter preserves the zero-frequency or dc signals. Let ν =
(N +1)/2. By employing (4), we can partition the L-filter
coefficient vector as follows

a(k) =
(
aT

1 (k)|aν(k)|aT
2 (k)

)T
(5)

where a1(k), a2(k) are (N − 1)/2 × 1 vectors given by

a1(k)=(a1(k),. . ., aν−1(k))T a2(k)=(aν+1(k),. . ., aN (k))T

(6)
and the coefficient for the median input sample is evaluated
as follows:

aν(k) = 1 − 1T
ν−1a1(k) − 1T

ν−1a2(k). (7)

Let a′(k) be the reduced L-filter coefficient vector

a′(k) =
(
aT

1 (k)|aT
2 (k)

)T
(8)



and x̂r(k) be the following vector

x̂r(k) =

[
xr1(k) − x(ν)(k)1
xr2(k) − x(ν)(k)1

]
(9)

Following the analysis in [4] it can be proven that the LMS
recursive relation for updating the filter coefficients is

â′(k + 1) = â′(k) + μ ε(k) x̂r(k) (10)

where ε(k) is the estimation error at time instant k, i.e.,
ε(k) = s(k)− y(k). Eq. (10) along with (7) constitute the
location-invariant LMS L-filter.

3 Variants of unconstrained LMS L-
filters

In the sequel, we deal with the unconstrained LMS
adaptive L-filter [3] whose coefficients are updated by us-
ing the following recursive formula:

â(k + 1) = â(k) + μ(k) ε(k) xr(k). (11)

Three modifications of the unconstrained LMS adaptive L-
filter are discussed, namely, the normalized LMS L-filter,
the sign LMS L-filter and the modified LMS L-filter with
nonhomogeneous step-sizes.

The normalized LMS L-filter does not share the diffi-
culty in choosing the appropriate step-size parameter that
is frequently met in the ordinary LMS L-filter (e.g. when
μ(k) = μ). The adaptation of the normalized LMS L-filter
coefficients is described by

â(k + 1) = â(k) +
μ0

||xr(k)||2 ε(k) xr(k). (12)

The recursive equation (12) is equivalent to the linear nor-
malized LMS algorithm. It can easily be shown that μ0

should be chosen to satisfy the inequality 0 < μ0 ≤ 2
3
.

The derivation of the majority of adaptive filter algo-
rithms relies on the minimization of MSE criterion. An-
other optimization criterion that is encountered in image
processing is the Mean Absolute Error (MAE) criterion.
The so called sign LMS L-filter that minimizes the MAE
between the filter output and the desired response is de-
rived as well. The adaptation of the sign LMS L-filter
coefficients is given by

a(k + 1) = a(k) + μ sgn [ε(k)] xr(k) (13)

where sgn [·] denotes the sign of the bracketed expression:

sgn [x] =

{
1 if x > 0

−1 if x < 0.
(14)

It is worth noting that by substituting the following step-
size sequence

μ(k) =
μ0|ε(k)|

xT
r (k)xr(k)

0 < μ0 < 1 (15)

into (13), the updating formula for the normalized LMS
L-filter coefficients is obtained. Therefore, the normalized
LMS L-filter (12) and the sign LMS L-filter (13) for the
choice of the step-size sequence (15) are identical.

Subsequently, a modified LMS L-filter with nonhomo-
geneous step-sizes is introduced in order to accelerate the
rate of convergence of the adaptive L-filter by allowing the
convergence of each L-filter coefficient to be controlled by
a separate step-size parameter. We have found by experi-
ments that the following step-size sequence

μi(k) = μ0

∑k

j=0
x(i)(k − j)∑k

j=0
x(1)(k − j)

(16)

gives results comparable to those obtained by using the
normalized LMS L-filter algorithm. By using (16), the
modified LMS L-filter updating formula is written as fol-
lows:

a(k + 1) = a(k) + ε(k) M(k)xr(k) (17)

with M(k) = diag [μ1(k), μ2(k), . . . , μN (k)] denoting a di-
agonal matrix.

Finally, a signal-dependent adaptive filter structure is
developed. It aims at a different treatment of the im-
age pixels close to the edges from the pixels that belong
to homogeneous regions. The signal-dependent adaptive
L-filter structure consists of two LMS adaptive L-filters
whose outputs yL(k) and yH(k) are combined to give the
final response as follows:

y(k) = yL(k) + β(k){yH(k) − yL(k)} =

= β(k)yH(k) + [1 − β(k)] yL(k) (18)

where β(k) is a local measure of signal activity that varies
between 0 and 1. The local Signal-to-Noise Ratio (SNR)
measure derived in [6] has been employed, i.e.

β(k) = 1 − σ2
n

σ̂2
x(k)

(19)

where σ2
n is the noise variance and σ̂2

x(k) is the local vari-
ance of the noisy input observations.

4 Simulation examples

Only one set of experiments conducted on images is de-
scribed due to lack of space. In this set, we presuppose
that a reference image (e.g. the original image) is avail-
able. In practice, reference images are usually transmitted
through TV telecommunication channels to measure the
performance of the channel. In such cases, the proposed
adaptive L-filters are very useful, if the design of an opti-
mal filter for the specific channel characteristics is required.
Our goal is to compare the performance of the adaptive
L-filters under study. Two criteria have been employed,



Table 1: Noise reduction and Mean Absolute Error
reduction (in dB) achieved by the various LMS adap-
tive L-filters in the restoration of “Lenna” corrupted
by mixed impulsive and additive Gaussian noise.

Method NR MAER

median 3 × 3 -8.756 -8.147

location-invariant LMS L-filter
3 × 3 (μ = 5 × 10−7) -9.747 -9.192

modified LMS L-filter 3 × 3
with nonhomogeneous step-sizes

(μ0 = 5 × 10−7) -11.216 -10.867

normalized LMS L-filter 3 × 3
(μ0 = 0.8) -11.281 -11.071

signal-dependent normalized
LMS L-filter structure (equal
dimensions 3 × 3; βt = 0.75) -9.024 -9.552

signal-dependent normalized
LMS L-filter structure

(L: 5 ×5, H: 3 ×3; βt = 0.75) -13.224 -13.928

namely, the noise reduction index (NR) defined as the ra-
tio of the output noise power to the input noise power,
i.e.,

NR = 10 log

1
K L

∑K

i=1

∑L

j=1
(y(i, j) − s(i, j))2

1
K L

∑K

i=1

∑L

j=1
(x(i, j) − s(i, j))2

(in dB)

(20)
and the Mean Absolute Error Reduction (MAER) defined
as the ratio of the mean absolute error in the output to
the mean absolute error in the input, i.e.,

MAER = 20 log

1
K L

∑K

i=1

∑L

j=1
|y(i, j) − s(i, j)|

1
K L

∑K

i=1

∑L

j=1
|x(i, j) − s(i, j)|

(in dB)

(21)
In (20) and (21), s(i, j) is the original image pixel, x(i, j)
denotes the same image pixel corrupted by noise and y(i, j)
is the filter output at the same image pixel. K, L are the
number of image rows and columns respectively.

The NR as well as the MAER achieved by the location-
invariant LMS L-filter, the normalized LMS L-filter and
the modified LMS L-filter with nonhomogeneous step-
sizes, all of dimensions 3 × 3 in the case of mixed im-
pulsive and additive Gaussian noise are listed in Table 1.
In the same table, we have also included the corresponding
figures of merit for the 3 × 3 median filter.

As can be seen, the condition for location-invariant es-
timation is strict enough and the resulting adaptive L-
filter is only 1 dB better than the median filter with re-
spect to both quantitative measures. The modified LMS
L-filter with nonhomogeneous step-sizes is the second best
adaptive L-filter yielding an almost 2.5 dB better NR and
MAER compared to the median filter. The normalized
LMS L-filter achieves the best performance both in the

MSE sense as well as in MAE sense. Especially for the
MAE criterion, this performance was expected, since we
have already demonstrated the connection between the
sign LMS L-filter and the normalized one. The optimal
value of parameter μ0 has been found experimentally. In
addition, we have tested the performance of two signal-
dependent adaptive L-filter structures. The first one uses
two 3 × 3 adaptive L-filters that are trained by different
regions of the corrupted input image. More specifically, the
pixels that belong to the homogeneous image regions are
used to adapt the coefficients of the one adaptive L-filter,
while those that are close to the image edges are used to
adapt the coefficients of the second adaptive L-filter. Any
of the adaptive L-filters that have been described in this
paper (e.g. the location-invariant LMS L-filter, the nor-
malized LMS L-filter or the modified LMS L-filter with
nonhomogeneous step-sizes) can be included in the signal-
dependent structure. In the experiments described, we
have used the normalized LMS L-filter. By inspecting Ta-
ble 1, it is seen that the signal-dependent adaptive L-filter
structure provides the best results, when the window of
the normalized LMS L-filter that is used in homogeneous
image regions is of larger dimensions (e.g. 5 × 5) than that
of the adaptive LMS L-filter that is trained by pixels close
to the image edges. The observed superior performance
is due to the larger window size that is used to filter the
noise in homogeneous regions.
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