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Abstract

Resorting to the rich, psycho-physiologically
grounded, properties of the slow temporal modu-
lations of music recordings, a novel classifier en-
semble is built, which applies discriminant sparse
projections. More specifically, overcomplete dictio-
naries are learned and sparse coefficient vectors are
extracted to optimally approximate the slow tempo-
ral modulations of the training music recordings.
The sparse coefficient vectors are then projected
to the principal subspaces of their within-class and
between-class covariance matrices. Decisions are
taken with respect to the minimum Fuclidean dis-
tance from the class mean sparse coefficient vectors,
which undergo the aforementioned projections. The
application of majority voting to the decisions taken
by 10 individual classifiers, which are trained on the
10 training folds defined by stratified 10-fold cross-
validation on the GTZAN dataset, yields a music
genre classification accuracy of 84.96% on average.
The latter exceeds by 2.46% the highest accuracy
previously reported without employing any sparse
representations.

1 Introduction

Despite the lack of a commonly agreed definition
of music genre, music genre is probably the most
popular description of music content [13]. The ma-
jority of music genre classification algorithms model
the music signal by the long-term statistical distri-
bution of its short-time features. Commonly used
feature sets represent either timbral texture, rhyth-

mic content, pitch content, or combinations of the
aforementioned characteristics [16]. The slow tem-
poral modulations have appealing properties from
the human perceptual point of view. This has mo-
tivated us to employ the auditory model proposed
in [19] in order to map a given music recording to
a two-dimensional (2D) representation of its slow
temporal modulations.

Recently, the interest on sparse representations
of signals has revived [4,5]. Resorting to the strong
theoretical foundations of sparse representations,
given a set of training auditory temporal modu-
lations, the dictionary, that best represents each
member of the training set under sparsity con-
straints, is extracted by means of the K-SVD algo-
rithm [1]. To develop a supervised music genre clas-
sifier, the most discriminating features (MDF') [15]
should be extracted by using the Fisher’s multi-
class linear discriminant analysis (LDA). In par-
ticular, the sparse coefficient vectors are projected
to the principal subspaces of their within-class and
between-class covariance matrices by applying dual
LDA [17]. Decisions are then taken with respect
to the minimum Euclidean distance from the class
mean sparse coefficient vectors, which undergo the
same projections. The cascade of sparse representa-
tion and LDA is termed discriminant sparse projec-
tion. The assessment of the proposed music genre
classifier is conducted on the Tzanetakis’ database
(referred to as GTZAN dataset) [16]. However in-
stead of implementing random discriminant analy-
sis to boost performance, majority voting is applied
to the decisions taken by 10 dual LDA classifiers
trained on the 10 training subsets, defined by strat-
ified 10-fold cross-validation, and applied to each



test subset. The proposed classifier ensemble yields
an accuracy of 84.96% on average. The aforemen-
tioned genre classification accuracy is 2.46% higher
than that reported in [3].

The novel contributions of the paper are in the
formulation of the dual LDA of the auditory mod-
ulation representations as dual LDA applied to the
coefficients of their sparse representations and the
demonstration of the classification capability of the
majority voting scheme that employs multiple dual
LDA classifiers applied to the coefficients of the
sparse auditory modulation representations.

2 Auditory Temporal Modulations
of Music Signals and Their Sparse
Approximation

Next, we briefly describe how a 2D represen-
tation of auditory temporal modulations can be
obtained. Such a representation is a joint acous-
tic and modulation frequency representation [14],
which discards much of the spectro-temporal de-
tails and focuses on the underlying slow tempo-
ral modulations of the music signal. In this pa-
per, the mathematical model of Yang et. al [19]
is adopted. Psychophysiological evidence justifies
the choice of r € {2,4,8,16, 32,64, 128,256} (Hz)
to represent the temporal modulation content of
sound. The cochlear model, employed in the first
stage, has 96 filters covering 4 octaves along the
tonotopic axis (i.e. 24 filters per octave). Accord-
ingly, the auditory temporal modulations of a set of
music recordings (i.e. a dataset) are naturally rep-
resented by a third-order nonnegative real-valued
tensor Y € RJITXNfXNS7 where Ny = 96, N, = 8,
and N, denotes the number of music recordings.
Let Y3, € RfSX(Nf'N’") be the 3rd mode matrix
unfolding of the aforementioned tensor. Obviously,
Y = Y(Tg,’) = [y1ly2| - |yn.], where T denotes ma-
trix transposition, is the data matrix. Each col-
umn y;, j = 1,2,..., N, is the lexicographically
ordered vectorial representation of the 2D auditory
temporal modulation of every sample in the dataset
having originally size Ny- N, = 768, which is down-
sampled with ratio 1/8, 1/4, 1/3, and 1/2 in the
frequency-rate 2D domain yielding finally a vector
of size M € {12,48,85,192}, respectively.

A downsampled representation of auditory tem-
poral modulations y; € Rf, 7 = 1,2,..., N,
called sample hereafter, admits a sparse approxima-
tion over a dictionary D € RM*¥ (whose columns
are referred to as atoms), when y; can be approx-

imated either exactly or closely as a linear combi-
nation of a few only atoms of D, i.e. y; = Dx; or
lly; —Dx,||, <7, where || ||, denotes the ¢, vector
norm for p = 1,2 and oco. Here, we are interested
in p = 2, because f5 norms are employed in LDA
as well. K-SVD [1] has been proposed for learning
D with a fixed number of atoms K. Let D* be the
overcomplete dictionary D* learned by the K-SVD.

3 Dual Linear Discriminant Analysis
of Sparse Representations

Let the training set contains N, genres and each
genre class ); has n; samples whose sample mean
vector is denoted by m;, i = 1,2,...,N,. If
Sw, Sp, and m are the within-class sample covari-
ance matrix, the between-class sample covariance
matrix, and the gross sample mean vector of the
whole training set, respectively, the MDF's are ob-
tained by projecting the training samples using the
columns of matrix W*, so that the ratio of the de-
terminants is maximized [6]:

. (WS, W]
W* = argvl;[/vlax m (1)

To cope with the small sample size problem, we pro-
pose to apply LDA in the space of the sparse repre-
sentations defined by the matrix D*. Let m; be the
sample mean vector of the sparse coefficients associ-
ated to the training samples that belong to the ith
class, i.e. m; is defined as m; = n% Zj:yjeyi, X;.
Then, S, ~ D*S,, [D*]7, where S,, is the within-
class sample covariance matrix of the sparse coef-
ficients. Similarly, S, ~ D* S, [D*]7, where S, is
the between-class sample covariance matrix of the
sparse coefficients. Let W 2 [D*]” W. The opti-
mization problem (1) can be recast as
S A <k
max M. (2)
w |WTS,, W|

Let W* be the solution of the optimization problem
(2). The solution of the original LDA optimization
problem (1) is obtained as

w* = [[D*]1]" W* (3)

where 1 denotes the Moore-Penrose pseudoinver-
sion. (3) suggests that the original training samples
are projected to

z; = W y; = W x; (4)



which can be interpreted as an LDA applied to
the coeflicients of the sparse representation. Ac-
cordingly, using the terms most expressive features
(MEFs) and MDFs, introduced in [15], we may
claim that the coefficients of the sparse represen-
tation x; are the MEFs, and the application of
the LDA to them, producing z;, yields the MDFs.
The cascade of sparse representation and LDA is
the proposed discriminant sparse projection. Ac-
cordingly, the distance of any sample y from the
1th class center (i.e. the class mean vector) m;,
1=1,2,..., Ny is given by

D(y,m;) = /W7 (x—mi))[. (5)
W* can be computed by applying the so-called dual
space LDA proposed in [17], which performs LDA
in the principal subspaces of S,, and S, denoted
by Uj. and U%, respectively. In (5), [[[W*]" (x —
i) || = [[[U5]" (x—1ig) || + 0| [[U]" (x —xiy) |2,
where o is used to ensure that the two ¢, norms pos-
sess the same scale in the two principal subspaces.
The test sample y is classified to genre

i* = argmin D(y, m;). (6)
1

Both theoretical and empirical studies have
demonstrated the advantages of the classifier com-
bination paradigm over the individual classifiers [8].
Our interest is in the design of a classifier ensem-
ble, which resorts to discriminant sparse projec-
tions trained on different data subsets. In particu-
lar, the classifier ensemble has been constructed by
exploiting the 10 folds the training dataset is split
into by stratified 10 fold cross-validation in order
to learn the overcomplete dictionary [D*], and the
projection matrices [U%]. and [UZ]; in each train-
ing dataset fold 7 = 1,2,...,10. By doing so, 10
discriminant sparse projections are learned. Then,
for each test sample, a voting is performed between
the classification labels assigned to it by (6) using
the aforementioned 10 discriminant sparse projec-
tions. The final decision is to classify the test sam-

ple to the class received the most votes.

4 Experimental Results

In order to assess the accuracy of the proposed
discriminant sparse projections for genre classifi-
cation, experiments are conducted on the publicly
available dataset GTZAN, that has been collected
by G. Tzanetakis [16]. The dataset consists of
10 genre classes, namely Blues, Classical, Country,

Disco, HipHop, Jazz, Metal, Pop, Reggae, Rock.
Each genre class contains 100 audio recordings 30
sec long. In [2,9-12,16], stratified 10-fold cross-
validation has been employed. Thus 10 training
subsets of 900 audio recordings are defined and by
vectorizing the representation of auditory temporal
modulations extracted from each recording in the
training subset, the raw training pattern matrix of
size 768 x 900 is created. By downsampling the
raw vectorized representations of auditory tempo-
ral modulations with ratios 1/8, 1/4, 1/3, and 1/2,
Y € RM*Nst i obtained for M € {12,48, 85,192}
and Ng = 900, respectively. 100 samples (10 of
each genre), that are not included in each train-
ing subset, form the raw test pattern matrix of
size 768 x 100, which also undergoes downsampling.
The overcomplete dictionary learned by KSVD is
formed by K = 400 atoms. At most L = 20 co-
efficients for the sparse representation are derived
by Orthogonal Matching Pursuit (OMP), which is
repeated for 80 iterations. To estimate the null
space of the within-class sample covariance matri-
ces, the tolerance parameter in the function rank.m
of MATLAB was set to 107°. The aforementioned
experimental setup is adopted for all individual
classifiers. However, for the classifier ensembles, we
employ the 10 training subsets to learn 10 discrim-
inant sparse projections, which are applied to each
test subset as was explained in Section 3. The ap-
plication of majority voting to the decisions taken
by 10 individual classifiers, yields a music genre
classification accuracy of 84.96% on average.

Notable music genre classification accuracies re-
ported on the GTZAN dataset are summarized in
Table 1. Although the table entries are sorted in
a decreasing order of the reported accuracy, it is
worth noting that best accuracies have been re-
ported by the more recent techniques in a course
of 8 years after the release of the GTZAN dataset
and the first music genre classification accuracy re-
ported on it. In the following, due to lack of space,
we comment only three table entries. The best ac-
curacy ever reported (e.g. 91%) was obtained by
applying the sparse representation-based classifica-
tion proposed in [18] to the slow auditory tempo-
ral modulations [12]. Bergstra et al. tested mel-
frequency cepstral coefficients, fast Fourier trans-
form coefficients, linear prediction coefficients, and
zero-crossing rate and reported classification ac-
curacy reaching 82.5% for the Adaboost meta-
classifier. It is seen that the proposed discriminant
sparse projections classifier ensemble, that builds
also on sparse approximations, offers an accuracy



that exceeds by 2.46% the best accuracy reported
in [3] without exploiting sparseness. For compar-
ison purposes, a music genre classification accu-
racy of 71.3% was reported for LDA applied to
Daubechies wavelet coefficient histograms on the
same dataset [9]. However, Li et al. reported 78.5%
by employing support vector machines (SVMs) and
LDA for classification [9].

Table 1. Notable classification accuracies
achieved by music genre classification
techniques (in %).

Reference | Accuracy
[12] 91
3 82.5
9 78.5
11 78.2
10 76.8
2] 75
[7] 74
[16] 61

The reported accuracy of 84.96% in addition to
the accuracy 91% disclosed in [12] justifies paying
more research effort toward the extraction of sparse
representations and the assimilation of such sparse
representations within classifiers.
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