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Abstract

Two wvariants of dynamic link matching based on
mathematical morphology are developed and tested for
frontal face authentication, namely, the Morphological
Dynamic Link Architecture and the Morphological Sig-
nal Decomposition - Dynamic Link Architecture. Lo-
cal coefficients which weigh the contribution of each
node in elastic graph matching according to its dis-
criminatory power are derived. The performance of
the proposed algorithms is evaluated in terms of their
Receiver Operating Characteristic and the Equal Error
Rate achieved in M2VTS database. The comparison
with other frontal face authentication algorithms de-
veloped within M2VTS project indicates that Morpho-
logical Dynamic Link Architecture with discriminatory
power coefficients is ranked as the best algorithm in
terms of the Equal Error Rate.

1 Introduction

Face recognition has exhibited a tremendous
growth for more than two decades. A critical sur-
vey of the literature related to human and machine
recognition is found in [1]. An approach that ex-
ploits both the grey-level information and the shape
information is the so-called Dynamic Link Architec-
ture (DLA) [2, 3, 4]. The algorithm is split in two
phases, i.e., the training and the recall phase. In the
training phase, the objective is to build a sparse grid
for each person included in the reference set. Towards
this goal a sparse grid is overlaid on the facial region
of a person’s digital image and the response of a set
of 2D Gabor filters tuned to different orientations and
scales is measured at the grid nodes. The responses
of Gabor filters form a feature vector at each node.
In the recall phase, the reference grid of each person
is overlaid on the face image of a test person and is
deformed so that a cost function is minimised.

In this paper, we develop variants of DLA that are
based on mathematical morphology and incorporate
local coefficients that weigh the contribution of each

grid node according to its discriminatory power. We
propose first a variant of DLA that is based on mul-
tiscale morphological dilation-erosion, the so-called
Morphological Dynamic Link Architecture (MDLA).
Another variant of DLA is based on morphological
signal decomposition. It is called Morphological Sig-
nal Decomposition-Dynamic Link Architecture (MSD-
DLA). Linear projections of the feature vectors at
the grid nodes (i.e., Principal Component Analysis
and Linear Discriminant Analysis) are incorporated
in the proposed variants to enhance their verification
performance. Moreover, local discriminatory power
coefficients aiming at separating more efficiently the
intra-class matching errors from the inter-class ones
are derived at each node. In both approaches we
are seeking methods to separate more efficiently fea-
ture vectors extracted from frontal facial images of the
same person (i.e., the client) and the ones extracted
from frontal facial images of the remaining persons
in a database (i.e., the impostors). A comparative
study of the verification capability of the proposed
methods against other frontal face authentication al-
gorithms developed by participating institutes within
the EU ACTS M2VTS project is undertaken. The
performance of the algorithms is evaluated in terms
of their Receiver Operating Characteristic (ROC) and
the equal error rate (EER) achieved in the M2VTS
database [5]. It is demonstrated that the combined use
of local discriminatory power coefficients with MDLA
achieves an EER of 3.7 % and is ranked as the best
frontal face authentication algorithm in the compara-
tive study undertaken.

2 Variants of dynamic link architec-
ture based on mathematical mor-
phology

An alternative to linear techniques for generating
an information pyramid is the scale-space morpholog-
ical techniques. In the following, a brief description of



MDLA and MSD-DLA is given.

In MDLA, we substitute the Gabor-based feature
vectors used in dynamic link matching by the mul-
tiscale morphological dilation-erosion [6]. The multi-
scale morphological dilation-erosion is based on the
two fundamental operations of the grayscale morphol-
ogy, namely the dilation and the erosion. Let R and
Z denote the set of real and integer numbers, respec-
tively. Given an image f(x) : D C 22 - R and a
structuring function g(x) : G C 22 — R, the dilation
of the image f(x) by g(x) is denoted by (f @ g)(x). Its
complementary the erosion is denoted by (f © ¢)(x).
Their definitions can be found in any book on Digital
Image Processing. The scaled hemisphere is employed
as a structuring function [6]. The multiscale dilation-
erosion of the image f(x) by g-(x) is defined by [6]:

(fDgs)(x) ifo>0
(f*go)(x)=¢ f(x) ifo=0 (1)
(fog,)(x) ifo<0.

The outputs of multiscale dilation-erosion for o =
—9,...,9 form the feature vector located at the grid
node x:

Jx) = ((F*99) (%), -, (%), (fxg-9)(x)) . (2)

An 8 x 8 sparse grid has been created by measuring
the feature vectors j(x) at equally spaced nodes over
the output of the face detection algorithm described
in [7]. j(x) has been demonstrated that captures im-
portant information for the key facial features [8].

Another method for modeling a grayscale facial im-
age region is to employ the morphological signal de-
composition (MSD). Let us denote by f(x) : D C
Z? — Z the facial image region that can be extracted
by using a face detection module such as the one pro-
posed in [7]. Without any loss of generality it is as-
sumed that the image pixel values are non-negative,
ie, f(x) > 0. Let g(x) = 1, Vx : ||x|]| < o denote
the structuring function. The value ¢ = 2 has been
used in all experiments. Symmetric operators will not
explicitly denoted hereafter. Given f(x) and g(x), the
objective of signal decomposition is to decompose f(x)
into a sum of components, i.e., f(x) = Zfil fi(x)
where f;(x) denotes the i-th component. The i-th
component can be expressed as:

fi(x) = [hi ©ni g] (x) (3)
where h;(x) is the so-called spine and

nig(x) =lgog®- - dgl(x). (4)
—_——

n; times

An intuitively sound choice for n; g(x) is the maxi-
mal function in f(x). That is, to choose ny such that
[f & (n1 +1)g] (x) <0,Vz € D. Thus the first spine is
given by hi(x) = [f © n1 g] (x). Morphological signal
decomposition can then be implemented recursively as
follows.

Step 1. Initialisation: fo(x) = 0.

Step 2. i-th level of decomposition: Starting
with n; = 1 increment n; until

[(F=fi) e i+ Dg| () <0, ()

Step 3. Calculate the ¢-th component by:

fi0) =3 [(f = fir) e mig| @mig § ().

~ v
e

hi(x)

(6)

Step 4. Calculate the reconstructed image at
the i-th level of decomposition:

fi(x) = fis1 (%) + filx)- (7)

Step 5. Let A(f — fl) be a measure of the ap-
proximation of the image region f(x) by its
reconstruction f;(x) at the i-th level of de-
composition. Increment i and go to Step 2
until i > K or A(f — fi_1) is sufficiently
small.

A second variant of dynamic link matching is devel-
oped that uses feature vectors extracted from the re-
constructed images f,(x) at the last K successive lev-
els of decomposition i = L— K, ..., L where L denotes
the maximal number of decomposition levels, i.e.:

360 = (£60 fros(0), o fo0)  ®)

where f(x) is the original grey level information. The
value K = 15 is found to give good results in practice.
This variant of DLA is termed Morphological Signal
Decomposition-Dynamic Link Architecture.

3 Linear projections in variants of dy-
namic link matching based on math-

ematical morphology
Two are the most popular linear projection algo-
rithms. The Karhunen-Loeve or Principal Component
Analysis (PCA) that does not employ category infor-
mation and the linear discriminant analysis (LDA)

that exploits the category labels.



First, feature vector dimensionality reduction is
pursued by employing PCA. In addition to dimen-
sionality reduction PCA decorrelates the feature vec-
tors and facilitates the LDA that is applied next in
eigenvalue/eigenvector computations as well as in ma-
trix inversion. Let j (x;) = j(x;) — m(x;) be the
normalised feature vector at node x; where j(x;) =
(j1(x1), ..., j1e(x:))" and m(x;) is the mean feature
vector at x;. Let IV denote the total number of frontal
images extracted from a database for all persons. Let
also I'(x;) be the covariance matrix of the feature vec-
tors j (x;) at node x;. In PCA we compute the eigen-
vectors that correspond to the p largest eigenvalues
of I'(x), say e1(xi),...,ep(xi). The PCA projected
feature vector is given by:

el (x1)

ix) =

el (-Xl)

where T' denotes the transposition operator. j(xl) is
of dimensions p x 1 with p < 19.

Next LDA is applied to feature vectors produced
by PCA. It is well known that optimality in discrim-
ination among all possible linear combinations of fea-
tures can be achieved by employing Linear Discrim-
inant Analysis (LDA). The feature vectors produced
after the LDA projection are called most discriminat-
ing features (MDFs) [9]. We are interested in applying
the LDA at each grid node locally. In the following,
the explicit dependence on x is omitted for notation
simplicity. Let S be the entire set of feature vectors at
a grid node and Sy, be the corresponding set of features
vectors at the same node extracted from the frontal fa-
cial images of the k-th person in the database. Our lo-
cal LDA scheme determines a weighting matrix (d x p)
V. for the k-th person such that the ratio:
tr [Vk {Zjesk (J—m)( - ﬁlk)T} VkT]

tr [Vk {Eje(gfsk)(j - ﬁlk)(.] - Ihk)T} VkT]

_ tr [VkaV,{] (10)
~ tr [VEBy VY]

My =

is minimised where my, is the class-dependent mean
vector of the feature vectors which result after PCA.
This is a generalised eigenvalue problem. Its solution,
(i.e., the row vectors v, of Vi, i =1,...,d) is given
by the eigenvectors that correspond to the d smallest
in magnitude eigenvalues of B,;lwk or equivalently
by the eigenvectors that correspond to the d largest in
magnitude eigenvalues of W;lBk provided that both

W, and B, are invertible. We shall confine ourselves
to the case d = 2, where only two MDF's are used
to simplify the presentation of the method. Because
the matrix W;lBk is not symmetric in general, the
eigenvalue problem could be computationally unsta-
ble. A very elegant method that diagonalises the two
symmetric matrices Wy and By and yields a stable
computation procedure for the solution of the gener-
alised eigenvalue problem has been proposed in [9].
This method has been used to solve the generalised
eigenvalue problem.

Let the superscripts ¢ and r denote a test and a
reference person (or grid), respectively. Let us also
denote by x; the I-th grid node. Having found the
weighting matrix Vi (x;) for the I-th node of the k-
th person in the database, we project the reference
feature vector after PCA at this node onto the plane
defined by v (x;) and v (x;) as follows:

Jx7) = Vi [P(x]) (J(x]) = my) — 1] (11)

Let us suppose that a test person claims the identity
of the k-th person. Then the test MDF vector at the
[-th node can be derived as in (11). The Ly norm of
the difference between the MDF vectors at the [-th
node has been used as a (signal) similarity measure,
ie.

9 9

Co3(x0),(x7)) = 13 (x}) = 5 (x7)]] (12)

Let us denote by V the set of grid nodes. The grid
nodes are simply the vertices of a graph. Let also A/(1)
denote the four-connected neighbourhood of vertex I.
The objective is to find the set of test grid node co-
ordinates {x}, [ € V} that yields the best matching.
As in DLA [2], the quality of the match is evaluated
by taking into account the grid deformations as well.
Grid deformations can be penalised using the addi-
tional cost function:
Coll,€) = Cold] e, dfe) = ldf — diell € € N
(13)
with d; ¢ = (x; — x¢). The penalty (13) can be incor-
porated to a cost function:

C{xi}) =Y qCUED, I +X1 Y Cell,)
ey EEN(1)

(14)
One may interpret the optimisation of (14) as a simu-
lated annealing with an additional penalty (i.e., a con-
straint on the objective function). Since the cost func-
tion (13) does not penalise translations of the whole
graph the random configuration x; can be of the form



of a random translation s of the (undeformed) refer-
ence grid and a bounded local perturbation q;, i.e.:

Xi=x{+s+q ; [l < g (15)
where the choice of ¢,,., controls the rigidity/plasticity
of the graph. It is evident that the proposed approach
differs from the two stage coarse-to-fine optimisation
procedure proposed in [2]. In our approach we replace
the two stage optimisation procedure with a proba-
bilistic hill climbing algorithm which attempts to find
the best configuration {s,{q;}} at each step.

4 Derivation of discriminatory power
coefficients weighting the node con-
tributions

It is well known that some grid nodes which coin-
cide with key facial features (e.g. the eyes, the nose)
play a more crucial role in the verification procedure
than other nodes. Thus, it would be helpful to calcu-
late a weighting coefficient for each node according to
its discriminatory power. We would like to weigh the
signal similarity measure at node ! given by:

Cu(i(x),3(x7)) = MliCxr) — 3 (x| (16)

using class-dependent discriminatory power coeffi-
cients (DPCs) DP;(S;) so that when person ¢ claims
the identity of person r a distance measure between
them is computed by:

DP(Sy) Co(i(x7),d(x]))
D(t,r) = (17)
= Znev DPa(Sr)

with S, denoting the class of the reference person r.
Let m,4.. (Sr, 1) be the mean intra-class matching error
for the class S, and m;,,,.. (S, [) be the mean inter-class
matching error between the class S, and S —S§, at grid
node [:

Mintra

E{Cy(i(x7),i(x])} Vt, r €S, (18)
Mier = E{C,((x)),i(x]))} VreS,, te(S-S5)

where S denotes the set of all classes in the database.
Let var;,...(Sr,1) and var;,..(Sr,!) be the variances
of the intra-class matching errors and the inter-class
matching errors given by (16), respectively. A plau-
sible measure of the discriminatory power of the grid
node [ for the class S, is the Fisher’s Linear Discrim-
inant (FLD) function defined on the node distances:

(minter (Sra l) — Mintra (Sra l))2

DP/(S,) = )
1(Sr) Valine (Sr, 1) + vari.. (S, 1)

(19)

We can see that in (19) the DP(S,) is maximised
when the denominator var,,..(Sr, ) + var,..(Sr,1) is
minimised. This can be interpreted as an AND rule
for the variances of the matching errors clusters. Al-
ternatively, one can use a more relaxed criterion of the
form:

DS = (M (Sr.D = Man(Se 1?0

B VAT ier (Spy 1) VaTira (Sry 1)

The denominator of (20) is interpreted as an OR rule
for the variances of matching error clusters.

5 Performance evaluation of the com-
bined schemes

The combined schemes of MDLA/MSD-DLA with
linear projections and discriminatory power coeffi-
cients have been tested on the M2VTS database [5].
The database contains both sound and image infor-
mation. Four recordings (i.e., shots) of the 37 persons
have been collected. In our experiments, the sequences
of rotated heads have been considered by using only
the luminance information at a resolution of 286 x
350 pixels. In the authentication experiments we use
only one frontal image from the image sequence of
each person that has been chosen based on symmetry
considerations. Four experimental sessions have been
implemented by employing the “leave one out” princi-
ple. Details on the experimental protocol used in the
performance evaluation as well as on the computa-
tion of thresholds that discriminate each person from
the remaining persons in the database can be found
in [8]. We may create a plot of False Rejection Rate
(FRR) versus the False Acceptance Rate (FAR) with
the varying thresholds as an implicit parameters. This
plot is the Receiver Operating Characteristic (ROC) of
the verification technique. The ROCs of the MDLA
with and without linear projections or discriminatory
power coeflicients are plotted in Figure 1. In the same
plot the ROCs of MSD-DLA with and without dis-
criminatory power coefficients are also depicted. The
Equal Error Rate (EER) of a technique (i.e., the op-
erating state of the method when FAR equals FRR) is
another common figure of merit used in the compari-
son of verification techniques.

The EER of MDLA with one MDF is 6.8% and
with two MDFs is 5.4% whereas the EER of MDLA
without any linear projections is 9.35 % [8]. It is seen
that the incorporation of linear projections improves
the EER by 2.55-4%. Moreover, the EER of MDLA
is found to be 3.7 % when the discriminatory power
coefficients (19) are used. A drop of 5.65% occurs in
this case.
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Figure 1: Receiver Operating Characteristics of
MDLA and MSD-DLDA with/without linear projec-
tions or local discriminatory power coefficients.

It is worth noting that the EER of MSD-DLA with-
out local discriminatory power coefficients is 11.89 %.
By using this discrimination criterion (19), we achieve
an EER of 6.73% following the same experimental pro-
tocol. When the discrimination criterion (20) is used,
the EER is 6.58%. Accordingly, a significant drop of
5.3% in EER is reported.

The best EERs achieved by frontal face authentica-
tion algorithms developed within M2VTS project are
tabulated in Table 1. It is seen that the proposed
MDLA with DPCs is ranked as the first method in
terms of EER.

Table 1: Best EERs achieved by frontal face authen-
tication algorithms within M2VTS project.

Method EER (%)

morphological dynamic link architec- 3.7

ture with discriminatory power coeffi-

cients

Optimised robust correlation [10] 4.8

Elastic graph matching based on Gabor 5.4

wavelets with local discriminants [11]

Grey level frontal face matching [12] 8.5
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