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ABSTRACT

Three novel adaptive multichannel L-filters based on mar-
ginal data ordering are proposed. They rely on well-known
algorithms for the unconstrained minimization of the Mean
Squared Error (MSE), namely, the Least Mean Squares
(LMS), the normalized LMS (NLMS) and the LMS-Newton
(LMSN) algorithm. Performance comparisons in color im-
age filtering have been made both in RGB and U*V*W~
color spaces. The proposed adaptive multichannel L-filters
outperform the other candidates in noise suppression for
color images corrupted by mixed impulsive and additive
white contaminated Gaussian noise.

1. INTRODUCTION

Adaptive signal processing has exhibited a tremendous
growth in the two past decades. Adaptive filters have been
applied in a wide variety of problems including system iden-
tification, channel equalization, echo cancellation in tele-
phone channels [1]. All the above-mentioned problems in-
volve one-dimensional (1-D) signals and 1-D linear filters.
However, linear filters are not suitable for applications where
the noise is impulsive, e.g. in image processing. In the later
case, a multitude of nonlinear techniques has been proved
a successful alternative to the linear techniques [2]. One of
the best known nonlinear filter classes is based on the order
statistics. It uses the concept of data ordering. There is
now a plethora of nonlinear filters based on data ordering.
Among them are the L-filters whose output is defined as
a linear combination of the order statistics [3]. A design
of L-filters which relies on a non-iterative minimization of
the MSE yields very tedious expressions for computing the
marginal and joint cumulative functions of the order statis-
tics (cf. [4]). On the contrary, adaptive L-filters are proved
to be appealing because they avoid the computational bur-
den of the non-iterative methods [5].

Recently, increasing attention has been given to non-
linear processing of vector-valued signals [6, 7, 8, 9]. The
major difficulty in the definition of multichannel filters is
the lack of an unambiguous and universally accepted def-
inition of ordering for multivariate data [10]. Filters such
as those proposed in [8, 9] are based on marginal ordering
whereas other filters are based on reduced ordering [6, 7].

The main contribution of this paper is in the design
of adaptive multichannel L-filters based on marginal data
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ordering using the MSE as fidelity criterion as well as in
the assessment of their performance in color image filtering.
Three novel adaptive multichannel L-filters are proposed in
this paper that are based on well-known algorithms for the
iterative unconstrained minimization of the MSE, namely,
the Least Mean Squares, the normalized LMS (NLMS) and
the LMS-Newton (LMSN) algorithm. The performance of
the adaptive multichannel L-filters under study in color im-
age filtering is compared to the one of other well-known mul-
tichannel nonlinear filters and of adaptive single-channel L-
filters as well. The comparative study is conducted both in
the RGB and in U*V*W™ color spaces.

2. PROBLEM STATEMENT

Let x1,...,xn be a random sample of N observations of a
p-dimensional random variable X. The marginal ordering
scheme orders the vector components independently, thus
yielding;:

Ti1) S Ty2) < ST i1=1,...,p. (1)
The output of a p-channel L-filter of length N operating
on a sequence of p-dimensional vectors {x(k)} for N odd is
given by [9]:

y(k) E Tx(k)] = > Aki(k) (2)

where A; is a (p x N) coefficient matrix. Let a};, | =
1,...,p denote the I-th row of matrix A; and x;(k) =
(azi(l)(k)7 C TN (k))T7 i=1,...,p be the (N x 1) vector
of the order statistics along the i-th channel. Let us also
suppose that the observed p-dimensional signal {x(k)} can
be expressed as a sum of a p-dimensional noise-free signal
{s(k)} and a noise vector sequence {n(k)} of zero mean vec-
tor having the same dimensionality, i.e., x(k) = s(k)+n(k).
The noise vector components are assumed to be uncorre-
lated in the general case. In addition, we assume that the
noise vectors at different values of index k are independent
identically distributed (i.i.d.) and that at each value of in-
dex k the signal vector s(k) and the noise vector n(k) are
uncorrelated. We want to find the multichannel L-filter co-
efficient matrices A;, ¢ = 1,...,p which minimize the MSE
between the filter output y (k) and the noise-free signal s(k).
Following similar reasoning as in [9], but without invoking
the assumption of a constant signal s, it can be shown that



the MSE is expressed as:

Z{a Rya) —2a()d. (k) +E [s"(k)s(k)] (3)

Whe~re au) = (alTl- |aZ; |- | agi)T 1~\/Ioreover, Rz:(k) =
E [X(k)X" (k)] and §) (k) = E [s:(k)X" (k)] with X(k) =
(X1 (k) | %3 (k) | ... [ %5 (k)T

Minimizing (3) over a(; is a quadratic minimization
problem that has a unique solution under the condition that
R, (k) is positive definite. It is easily deduced that the
minimum MSE coefficient vector is:

a(iy (k) = Ry " (k)ag (k). (4)

It is seen that (4) yields explicitly determined filter coeffi-
cients provided that we are able to calculate the moments
of the order statistics from univariate populations that ap-
pear in R;;(k) as well as the product moments of the order
statistics from bivariate populations that appear in R;;(k),
i # jand i = 1,...,p. This is fairly easy for i.i.d. input
variates, i.e., in the case of a constant signal s(k) = s as
has been demonstrated in [9]. Even for independent, non-
identically distributed input variates the framework tends
to become very complicated (cf. [9]). The difficulties are
increased in color image processing, where the observations
X(k) and the desired signal s(k) are strongly nonstation-
ary. In order to overcome this obstacle, we shall resort on
iterative algorithms for the minimization of (k) in (3).

3. UNCONSTRAINED MINIMIZATION OF
THE MEAN SQUARED ERROR

In this section, three adaptive multichannel L-filters are
derived that iteratively minimize the MSE (3) without im-
posing any constraints on the filter coefficients. These al-
gorithms are: (i) the LMS, (ii) the NLMS, and (iii) the
LMSN. The rationale underlying the choice of each algo-
rithm is stated explicitly.

The filter coefficient vectors a(;y, i = 1,...,p that min-
imize the MSE (3) can be computed recursively using the
steepest descent algorithm as follows:

R, (k)ag (k)] . (5)

Using X (k)X T (k) and s;(k)X (k) as instantaneous estimates
of Ry (k) and qg;) (k) respectively the LMS adaptive multi-
channel L-filter is obtained, i.e.:

Aoy (k) + p [si(k) —

ag) (k+1) = ag) (k) + p [ae) (k) -

apk+1) = X" (k)aq) (k)] X(k) (6)
where the bracketed term in (6) is the a priori estimation
error e;(k) between the i-th component of the desired sig-
nal s;(k) and the filter output y;(k) = XT(k)é(i). It is seen
that the LMS algorithm yields a very simple recursive rela-
tion for updating the L-filter coefficients. This is the ratio-
nale underlying its choice for minimizing the MSE. Eq. (6)
employs the composite vector of the ordered observations
X (k). On the contrary, the ordinary adaptive multichannel
LMS (linear) filter uses the vector of input observations.

Accordingly, the convergence properties of the LMS adap-
tive multichannel L-filter depend on the eigenvalue distri-
bution of the composite correlation matrix Ry (k).

Let M; be a diagonal matrix of dimensions (pN x pN)
associated with the updating equation for the coefficient
vector a(;) (k). The MSE (k) can be approximated by its
instantaneous value, ie., e(k) = >.7_ e7(k). Moreover,
the a priori estimation error at iteration (k 4+ 1) can be
expressed in the form of a Taylor series in terms of the a
priori estimation error at k, i.e.:

pN
i(k
ekt 1) = et + 3 2B ng

= Oagi;
pN pN
)
Jj=

where a;); denotes the j-th element of a(;y. In (7), Aag); =
agy;(k+1) —agy;(k) and O(3) are the higher order terms.
Due to the definition of filter output (2) the second and
higher order derivatives in (7) are zero. Accordmgly, the
step-size sequence fi; j; that minimizes e?(k + 1) satisfies

the equation:
pN
> i s ()X (k) = 1 (8)
j=1

provided that e;(k) # 0 and X;(k) # 0 during the adap-
tation. If the adaptation step weighs more the filter coeffi-
cients that have larger gradients than those having smaller
gradients, i.e., ui, j; = Bl ajjf)(iiﬂ, the following optimal
i)j
step-size sequence is obtained:

. |X; (k)|
Wi = et — 9)
G (k)]

The normalized LMS (NLMS) algorithm provides a way
to automate the choice of the adaptation step-size param-
eter in order to speed up the convergence of the algorithm.
Its design is based on a quite limited knowledge of the input-
signal statistics and it is able to track the varying signal
statistics. Let ps, j;(k) = u(k) be a single adaptation step-
size parameter for all the elements of coefficient vectors a ;).
From (8) we obtain (k) = 1/(X” (k)X (k)). Then, the sub-
stitution of p(k) into (6) yields the updating equations for
the coefficients of the normalized LMS adaptive multichan-
nel L filter, i.e.:

. . Lo S )
a(z)(k+1) a(z)(k)+ XT(k)X(k)el(k)X(k)v i=1,...,p

(10)
where po € (0,1] is a parameter that is introduced for ad-
ditional control. The composite vector of the ordered ob-
servations X(k) is employed instead of the vector of input
observations in (10).

It is well-known that the eigenvalue spread of the com-
posite correlation matrix R, (k) is large in principle. In
such a case, LMS-Newton (LMSN) algorithm is a power-
ful alternative to LMS [12]. The LMSN algorithm employs

computationally efficient estimates for the autocorrelation
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Figure 1: Learning curves for the multichannel adaptive
L-filters under study.

matrix of the input signal (in our case, of the composite vec-
tor of the ordered observations) and for the gradient of the
objective function (i.e., the MSE). The updating formula
for the LMSN multichannel L-filter is given by:

é(i)(k + 1) = é(i)(k) + uR;l(k)ei(k)X(k), 1= 1, BTN /N
(11)
An estimate of the composite matrix ].':lp(k) can be calcu-
lated by using the Robbins-Monro procedure which solves
the equation E [X(k)XT(k:) — Rp(k)} = 0. The solution of
this equation is given by:

R, (k) = Ry (k — 1) + ¢ [R(XT (k) — Ry(k = 1)] . (12)

By using the matrix inversion lemma, we obtain:

4. EXPERIMENTAL RESULTS

In this section, we present two sets of experiments in order
to assess the performance of the adaptive multichannel L-
filters that we have discussed so far.

First, the case of a two-channel 1-D signal s(k) = s cor-
rupted by additive white bivariate contaminated Gaussian
noise is treated, because for such a signal, the optimal mul-
tichannel L-filter coefficients have been derived in [9]. A
vector valued signal s = (1.0,2.0)7 corrupted by additive
white bivariate noise n(k) with probability density function
(pdf) identical to the one employed in [9] has been used as
a test signal. An approximation of the ensemble-averaged
learning curve for each adaptive algorithm has been ob-
tained following the procedure described in [1]. The learn-
ing curves are plotted in Figure 1. The filter length N has
been 9 in all cases. In the plots of Figure 1 points every 50
time instants have been used. It is seen that NLMS adap-
tive multichannel L-filter attains the fastest convergence
rate. Subsequently, the noise reduction index (NR) defined
as the ratio of the output noise power to the input noise
power, i.e.:

2 (Y (k) —s(k)" (y (k) — s(k))

NR = 10log Zk(x(k) —s(k))T(x(k) —s(k))’

(14)

Table 1: Noise reduction (in dB) achieved by the adaptive
multichannel L-filters for the bivariate contaminated Gaus-
sian noise model (Filter length N = 9).

Filter NR
LMS adaptive multichannel L-filter -18.057
NLMS adaptive multichannel L-filter | -17.616
LMSN adaptive multichannel L-filter | -18.661

| nonadaptive multichannel L-filter | -18.564 |

is measured and is compared to the one achieved by the
nonadaptive multichannel L-filter. The estimates of the
multichannel L-filter coefficients have been obtained by av-
eraging the steady state values of a.;)(k), i = 1,...,p over
the 200 independent trials of the experiment. The results
are tabulated in Table 1. To facilitate the comparisons,
the NR index achieved by the nonadaptive multichannel L-
filter designed in [9] is also given. By comparing the NR
indices tabulated in Table 1, we conclude that: (i) All al-
gorithms converge towards the optimal solution. (ii) The
LMSN adaptive multichannel L-filter approaches better the
NR achieved by the nonadaptive design. (iii) The LMS al-
gorithm is the second best. (iv) Although, NLMS attains
the fastest convergence rate, it is seen that its NR is approx-
imately 1 dB less than the NR achieved by the nonadaptive
design.

The second set of experiments deals with color images,
i.e., three-channel two-dimensional signals. Let us consider
the 50th frame of color image sequence “Trevor White”.
The original noise-free image is corrupted by additive white
trivariate contaminated Gaussian noise having the proba-
bility distribution:

(1= 0N(0;C1) + oN(0;Cs) (15)

for o = 0.1 plus impulsive noise such that 6 % of the im-
age pixels in each primary color component are replaced by
impulses of value 0 or 255 (i.e., positive and negative im-
pulses). In (15), C;, ¢ = 1,2 denotes the covariance matrix
of each trivariate joint Gaussian distribution. The following
covariance matrices have been used:

100 100 210 900 —-300 —210
C;=| 100 400 180 [ Cy= | —300 400 60
210 180 900 —210 60 100

(16)
A point that needs some further clarification is the choice of
the color space where the performance comparisons are to
be made. It is well known that color distances are not Eu-
clidean in the RGB primary system [11]. Color distances
are approximated by Euclidean distances in the so called
uniform color spaces e.g. the modified universal camera
site (USC), the L*a*b*, the L*u*v* and the U*V*W* [11].
In order to guarantee that the measured NR indices cor-
respond to perceived color differences, we felt the need to
test the performance of the several filters in a uniform color
space. We have chosen the U*V*W™ space for this purpose.
In all experiments, the 48th color image frame of “Trevor
White” is used as a reference image for the adaptive fil-
tering techniques. The NR achieved by the filters under



(a)
Figure 2: (a) Noisy 50th frame of “Trevor White”. (b) Output of the 3 x3 marginal median filter. (¢) Output of the 3 x 3
LMSN multichannel adaptive L-filter. Filtering is performed in U*V*W™.

study in both color spaces is given in Table 2. It is seen
that the LMSN is ranked as the best filtering technique
in U"V*W™ and as the second best filtering technique in
RGB. Figure 2a shows the noisy corrupted 50th frame of

Table 2: Noise reduction (in dB) achieved in RGB and
U*V*W™ color spaces by several filters in the restoration
of the noisy 50th color frame of “Trevor White”. (Filter
window 3x3).

Filter NR (dB) in color space

RGB U VW™

marginal median -11.750 -11.200
vector median L4 -10.006 -9.700
vector median Lo -8.528 -8.550
R g-filter -8.690 -8.850
a-trimmed mean (a = 0.2) -11.260 -10.820
arithmetic mean -8.510 -9.156
multichannel MTM filter -11.440 -11.248
multichannel DWMTM filter -13.358 -13.849
NLMS multichannel L-filter -11.245 -14.310
LMSN multichannel L-filter -12.428 -14.490
NLMS single-channel L-filters -9.687 -13.527
LMSN single-channel L-filters | -11.980 -14.225

color image sequence “Trevor White” in RGB color space.
The output of the 3 X 3 marginal median filter is shown
in Figure 2b for comparison purposes. The output of the
LMSN filter of the same dimensions is shown in Figure 2c.
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