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ABSTRACT 

In this paper, we address the design of multichan- 
nel L-filters based on marginal data ordering using the 
Mean-Squared-Error as fidelity criterion. Design pro- 
cedures subject to the constraints of unbiased or loca- 
tion-invariant estimation or without imposing any con- 
straint are discussed. It is shown by simulations that the 
proposed multichannel L-filters perform better than other 
multichannel nonlinear filters such as the vector median, 
the marginal alpha-trimmed mean, the marginal median. 
the multichannel modified trimmed mean and the mul- 
tichannel double-window trimmed mean: the multivariate 
ranked-order estimators as well as their single-channel coun- 
terparts. 

1. INTRODUCTION 

Multichannel one-dimensional and two-dimensional signals 
appear frequently in practice, for example in the cases in- 
volving multiple sources and receivers as well as in the pro- 
cessing of color images and sequences of images. Single- 
channel nonlinear filtering techniques have exhibited a 
tremendous growth in the past decade as alternatives of 
linear filtering in problems that cannot be efficiently solved 
by using linear techniques, e.g. in the case of non-Gaussian 
or signal-dependent noise filtering [4]. A class of nonlinear 
filters that has found extensive applications in digital sig- 
nal and image processing are the L-filters (sometimes also 
called order statistic filters) whose output is defined as a 
linear combination of the order statistics of the input se- 
quence [5]. Recently, increasing attention has been given to 
nonlinear processing of vector-valued signals [6:7,8,9]. 

The main contribution of this paper is in the design of 
multichannel L-filters that are based on marginal data or- 
derine (M-orderine) usine the Mean-Sauared-Error (MSEI 
as fidilitv criterion: M-oidering implies independent data 
ordering-in each channel. We assume that a multichan- 
nel signal is corrupted by additive white multivariate noise 
which generally exhibits correlation between different chan- 
nels. The unconstrained minimization of the .MSE is treated 
first. Structural constraints such as unbiasedness and 
location-invariance are also incorporated in the minimiza- 
tion procedure. The unconstrained minimization is shown 
that it leads to a global minimum. In order to test the per- 
formance of the designed multichannel marginal L-filters, 
long-tailed multivariate distributions are required. The 
derivation and design of such a distribution, namely, the 
Laolacian (b&exponential) distribution which belongs to 
Mdrgensterh’s family in the two-channel case is discussed. 

The outline of the paper is as follows. The design of mul- 
tichannel marginal L-filters is described in Section 2. Prac- 
tical considerations aiming at alleviating the difficulties that 
are encountered in the design of the proposed multichannel 
nonlinear filters are discussed in Section 3. Simulation ex- 

amples are included and conclusions are drawn in Section 4. 

2. MULTICHANNEL MARGINAL L-FILTER 
DESIGN 

Let xi,. , xx be a random sample of a p-dimensional ran- 
dom variable X where x, = (z,i,z,z,. , zlp)T. The M- 
ordering scheme orders each of the vector components in- 
dependently yielding: 

zJ(1) < zJ(2) < “’ 5 zJ(.v) j= l,...,p. (1) 

Let us suppose that an observed p-dimensional signal 
{x(k)} can be expressed as the sum of a known p 
dimensional signal s(k) and a noise vector sequence 
{n(k)} of zero-mean vector having the same dimension- 
ality, i.e.! x(k) = s(k) + n(l;). The noise vector n(k) = 

(n,(k), . . * np(k)) T is a p-dimensional vector of random 
variables characterized by the joint pdf of its components 
which are assumed to be correlated in the general case. In 
addition, we assume that the noise vectors at different time- 
instants are independent, identically distributed (i.i.d.) and 
that at every time-instant the signal s(k) and the noise vec- 
tor n(k) are uncorrelated. The output of a p-channel L-filter 
of length K operating on the sequence of p-dimensional vec- 
tors {x(k)}, for .V odd, can be expressed as 

where A, are appropriate (p x A’) coefficient matrices and 

2,(k) =-&z,(l)(k) ,... ,zJ(,\i((k))T’are the (!V x 1) vectors 
of the or er statistics along each channel. We shall de- 
sign the p-channel marginal-l-filter which operates on the 
pdimensional observed signal {x k } and is the optimal es- 
timator of s(k) by using the M L! between s(k) and the 
output of the p-channel marginal L-filter as fidelity crite- 
rion. 

Let a:, 2 = 1 1 : p be (1 x N) row vectors corresponding 

to the rows of matrix A,. Let R,, = E[%,%T] denote the 
correlation matrix of the ordered input samples in channels 
j and i. For j = i, R,, i = 1,. . ?p consists of moments of 
the order statistics from a univariate population and well- 
known formulae [1.5] can be used to devise a discrete al- 
gorithm for their-computation by vector quantizing the p- 
dimensional observations. For j # i, the elements of R,, are 
moments of the order statistics from a bivariate population. 
The results reported in [7,8] can be exploited to their com- 
putation. Let also I. = (E[zJ(l)l: E[zJ(z)]~. . : E[zJ(n;)l) 

T 

denote the mean vector of the-order statistics in channel j. 
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The !vISE between s(k) and y(k) is given by: 

r - -7 P aIf1 1, 
E= c a,~$.,ac,) - 2s(k) 

T 

! J 
: gp -tWTs(k) (3) 

r=! 
a&: 

where 

In the following, the time-index k will be suppressed with- 
out any lack of generality. We shall treat first the uncon- 
strained minimization of the JISE and then we shall impose 
constraints on the output of the multichannel marginal L- 
filter. 

Minimizing (3) over a,,, j: i = 1, . , p is a quadratic op- 
timization problem which has a unique solution provided 

that the symmetric matrix Rp is positive definite. The 
components of the vectors of the order statistics along each 
channel kJ I j = 1, . : p are linearly independent variables 
with probability 1 [2, pp. 179,180] due to the indepen- 
dence of the observations at different time instants. Thus, 

the diagonal submatrices of Rp, R,,, are positive definite 
with probability 1. The 2X random variables that form the 
vector of the order statistics from two different channels 
(Pi7 qj’ with i # j are linearly dependent in the general 
case, due to the correlation that exists between the ordered 
samples that correspond to the same time instant. Conse- 

quently, R, is positive semi-definite in general. We shall 

assume that R is not singular,, i.e.! that R, is indeed pos- 
itive definite. E quating the derivatives of E with respect to 
a,, with zero, i.e.. s = 0, and solving for the p-channel 

marginal L-filter toe ft’. icients, we obtain: 

l 

ajl) = 
sy fi,�i 

P 

a;,) = 

%a* 

Sl (I� 

m=2,...,p (7) 

The minimum MSE (MhfSE) associated with the optimal 
coefficients (Tj is: 

Emin = (1 - AjsTs I A = biifi;‘ip 

The fact that E is always nonnegative implies that cmin 1 0. 
Therefore: 0 < A 5 1.. - 

In (71. the ootimal coefficients for the unconstrained mul- 
tichannel marginal L-filter depend on the knowledge of the 
signal s (to be estimated). In addition. the distributional 
model (i.e., the marginal and joint probability/cumulative 
density functions) of the components of the input vector- 

valued signal x(k) must be known in order to calculate R, 
and i In many practical applications, the signal s to be 

estin%ed is unknown. unless the detection of a known sig- 
nal in noise is investigated. Furthermore, in general, the 
distributional model of input vector data is unknown. Ef- 
ficient procedures for estimating s and for the calculation 
of R, and 4, based on estimates of the marginal and joint 

probability densitv functions of the input vector data are 
developed in Sectibn 3. 

In the univariate case, L-filters are designed by impos- 
ing local structural constraints on the output of the L- 
filter. Two types of constraints have been incorporated 
in the design of single-channel L-filters [j]: unbiasedness 
and location-invariance. A multichannel marginal L-filter 
is said to be unbiased multichannel estimator of location, if 
E[y(k)j = s holds: or equivalently: 

a(); = s, i= l,....p 

Under the set of constraints (9). it can easily be shown that 
the optimal coefficients of the unbiased p-channel marginal 
L-filter are given by: 

* 
a:,) = aT&b %hp 

--P -P 

. 
a(l) = 

Za’ 

s1 (‘) 
I= 2,....p (10) 

and the MUSE associated with the optimal coefficients (10) 
is: 

(Eunb)min = ySTS. (11) 

Since A 5 1, the MMSE associated with the optimal un- 
biased p-channel marginal L-filter is always greater than 
the lMMSE (8) produced by the optimal unconstrained p- 
channel marginal L-filter. The need for an estimate S(k) 
of s(k) as well as for the design of unbiased multichannel 
L-filters based on estimates of the marginal and joint prob- 
ability density functions of input vector-valued observations 
is recognized in this case! too. iz multichannel marginal L- 
filter is said to be location-invariant, if its output is able to 
track small perturbations of its input, i.e., x’(k) = x(k) $ b 
implies that 

y’(k) = T[x’(k)] = y(kj + b (12) 

where y(k) = T[x(lc)]. The definition of location-invariant 
multichannel marginal L-filter (12) yields the following set 
of constraints imposed on the filter coefficients: 

T 
e aJJ = 1 Vj, j= l,....p 

T 
e aJ, = 0 Vi, i#j, j=l,..., p (13) 

where e denotes the (N x 1) unitary vector, i.e., e = 

(1: 1,. ., lj’. By incorporating (13) into (3) we obtain: 

where R, = {R,,} with R,, = E[ii,iiT]! j, i = 1,. ,p and 
iif = (nl(-ij.. .-. nl(r\;j)T. By-using-Lagrange multipliers: the 
minimization of the WE subject to (13) yields the follow- 
ing optimal coefficients for the location-invariant p-channel 
marginal L-filter: 

i= l:...,p (15) 

where we assume that RF’ exists and it has been decom- 
posed in terms of the (111 x N) square matrices P,,, i, j = 
1.. . , p as in (5). G is the (p x p) square matrix G = 
{e’P,,e}: i, j = 1.. .,p:In Eq. (15), det( ) denotes the 
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determinant of a matrix and c,,(G) stands for the cofac- 
tor of the ii-element of G. The associated with L-filter 
coefficients (15) MMSE is given by: 

(Eloc)min = det(G) .-, I-&(G) 
.-. 

(16) 

It is seen that the optimal coefficients (15) are indepen- 
dent of the two-channel constant signal to be estimated. 
Unfortunately, it has been found by experiments that the 
location-invariant two-channel marginal L-filter leads only 
to a slightly higher noise suppression than its single-channel 
counterparts. 

3. PRACTICAL CONSIDERATIONS 

As can be seen in the preceding analysis. the following dif- 
ficulties are met in the design of the unconstrained and the 
unbiased multichannel L-filters: (i) The marginal L-filter 
coefficients depend explicitly on the signal s (to be esti- 
mated). (ii) The marginal and joint probability density 
functions of the input vector-valued observations must be 

known in order to calculate &, and 4. 

Let us consider first the case of a constant signal s. We 
restrict the discussion in one-dimensional signals without 
any loss of generality In this case. an initial-estimate s 
for s(k) can be obtarned from the past L-filter outputs y 

k) 
I), 

I= k - 1: k - 2:. as follows: 

k-1 

where hTC is chosen to be sufficiently large. The initial es- 
timate (17) can be used in the place of s in (7) or (10) 
to determine the multichannel marginal L-filter coefficients 

at each time instant k! provided that RF’ and 4, have 

alreadv been computed based on the knowledge of the dis- 
tributi-onal model of input vector-valued observations. For 
k < X,! the marginal median can be used to initialize fil- 
tering. Another suitable estimator of s is the vector median 
of the past L-filter outputs which is based on the Lz norm 
(Vhf~,) [6]. An even better estimate, S(k), can be obtained 
by employing the arithmetic mean or the marginal median 
of the X, past input vector-valued observations (i.e.! noisy 
observations). 

Next, we proceed to the treatment of non-constant sig- 
nals s(k) (e.g. a multichannel edge). A segmentation of a 
multichannel non-constant signal to homogeneous regions 
where the signal s(k) is locally constant (i.e., edges do not 
occur) and to transition regions where an edge occurs in a 
certain input channel by using an edge detection algorithm 
is proposed. Such an edge detection algorithm may be the 
one described in [lo]. Having segmented the input vector- 
valued observations to homogeneous regions where a locally 
constant multichannel signal is corrupted by additive white 
multivariate noise and to transition regions, we may use one 
of the previously described techniques to estimate the con- 
stant multichannel signal within each homogeneous region 
by restricting either the past L-filter outputs or the past 
noisy input vector-valued observations to lie within the ho- 
mogeneous region. 

In the seauel. the design of multichannel marginal L- 
filters based bn estimates Gf the marginal and joint pdf of 
input vector-valued observations is considered. Both in the 
case of a multichannel constant signal corrupted by addi- 
tive white multivariate noise as well as within the homoge- 
neous regions in the case of a noisy nonconstant multichan- 
nel signal, the proposed filters will operate on identically 

distributed observations. Therefore, we can estimate the 
marginal statistics of input vector data from the empiric 
pdf. i.e.. by uniformly quantizing the range of input obser- 
vations in each channel to a number, say 44, of discrete val- 
ues and constructing their histogram. Moreover. the input 
joint statistics can be estimated from the empiric joint pdf, 
i.e.. by exploiting the uniform quantization of any couple of 
input vector data components to a set of pairs of discrete 
values and by estimating their cooccurrence matrix. 

In the transition regions, input vector-valued observa- 
tions may be considered to a first approximation as inde- 
pendent non-identically distributed random variables. The 

formulae for calculating &, and $ for independent i.i.d. 

input variates do not hold anymore. for the design of (un- 
constrained/unbiased) two-channel marginal L-filters close 

to the edge. Since the framework for calculating l?., and F- 

for independent non-identically distributed input variates% 
very complicated r11.121. we shall emolov the marginal me- 
dian to filter the input &tor data that belong to Gansition 
regions. 

4. SIMULATION EXAMPLES 

We shall discuss the treatment of two-channel one- 
dimensional signals. The previous attempts to use nonlinear 
filters based on order statistics for vector-valued signal pro- 
cessing either have been derived from a natural generaliza- 
tion of univariate exponential distributions [6] or have been 
tested on a contaminated multinormal distribution which 
has been used to model long-tailed multivariate distribu- 
tions [7]-[9]. In the following, the design of the bivariate 
Laplacian distribution is examined. 

It is well-known [3] that a joint distribution FZ1.ZZ(zi, zz) 
given by: 

F Z,,IZ(Zl, 22) = F*,(n) Fq(22) [l + 0 

~(1 - Fz,(z~)) (1 - Fz,(zz))l (18) 

where a E [-l.+l], has as marginal cdf’s F,,(z,) i = 
1,2. The family of joint distributions 
Morgenstern’s family. We are intereste 6 

18) is the so-called 
in the case: 

F,,(G) = 

{ 

f exp[fi 21 if z,<O 

exp[-JZ 21 
(19) 

1 -f if z,>O 

for i = 1,2. This approach yields the bivariate Laplacian 
distribution. 

The performance of the proposed multichannel marginal 
L-filters as estimators of location (or equivalently, in multi- 
channel noise filtering) has been compared to the perfor- 
mance of other multichannel nonlinear filters as well as 
of their single channel counterparts. The following non- 
linear filters have been considered: the vector median [6], 
the marginal median [7:8;, the marginal o-trimmed mean 
[7,8], the multichannel modified trimmed mean (MTM) [S], 
the multichannel double window modified trimmed mean 
(DW-MTM) [8] and the ranked-order estimator RE [9]. We 
have also included the arithmetic mean in the comparative 
study, because it is a straightforward choice for noise fil- 
tering in many practical applications. The performance of 
the single-channel L-filter counterparts, i.e.! the unbiased 
and location-invariant single-channel L-filter [5] used to fil- 
ter the noise in each channel independentlv has also been 
taken into consideration. The quantitative criterion we used 
was the noise reduction index (NR) defined as the ratio of 
the output noise power to the input noise power, i.e.,: 

.“;R = lolog C,b+) - s)T’(Y(k) - ‘1 
C,(-+) - ‘jTtXtk) - ‘) 

(20) 
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First. the performance of the nonlinear filters under study 
when a vector-valued constant signal s = (1.0,2.0)’ is 
corrupted by additive white bivariate noise n(k) whose 
components are distributed according to the Laplacian- 
Morgenstern distribution has been studied. The case of 
a bivariate noise with zero-mean vector. g1 = o2 = fi 
and o = 1.0 is considered. The SR index is shown in Ta- 
ble 1 for filter length :Y = 5. It can clearly be seen that 
the unconstrained two-channel L-filter attains the highest 
noise reduction. The noise reduction capability of the unbi- 
ased two-channel L-filter approaches the one of the uncon- 
strained two-channel L-filter. Furthermore, the unbiased 
two-channel L-filter attains again almost 2 dB higher noise 
suppression than its single-channel counterpart. 

Next. we consider the case where the distributional model 
of input vector-valued observations is unknown. In such 
a case, the moments of the order statistics that form the 

matrix & and the mean vector i are calculated by us- 

ing estimates of the marginal and$int probabilitv densitv 
function of input vector data. The design of an “unbiased 
two-channel marginal L-filter of length A- = 5 is treated for 
the Laplacian-Morgenstern noise model. As can be seen in 
Table 2: the deterioration in noise suppression is almost neg- 
ligible (0.056 dB). When s is estimated from the marginal 

median of the N, past input data vectors and Rz and i2 

are calculated based on estimates of the marginal and joint 
pdfs of input data vectors: the total deterioration varies be- 
tween 1.12 dB for ;‘i’, = 49 to 2 dB for N, = 25. The same 
procedure has also been applied with similar success to the 
design of two unbiased single-channel L-filters that have 
been used to filter the two input channels independently. 
Again, it is verified experimentally that the unbiased two- 
channel marginal L-filter is superior to its single-channel 
counterparts yielding an almost 2 dB higher NR index. 

Finally, the treatment of a two-channel one-dimensional 
edge corrupted bv additive white Laplacian-Morgenstern bi- 
variate noise is discussed. The case of a bivariate noise with 
zero-mean vector, oi = 02 = a and (Y = 1.0 is considered. 
In the first channel. a transition from level 1 to level 10 oc- 
curs at time instance ki. In the second channel, a transition 
from level 2 to level 15 occurs at time instant kz # ki The 
edge-detection algorithm described in [lo] has been used to 
segment the signal in homogeneous regions and in transi- 
tion ones. The results for noise reduction are summarized 
in Table 1. The unbiased single-channel L-filters that have 
been included in Table 1 have also been designed based on 

estimates for &a, 4, and s. Once more it is seen that the 

unbiased two-channel L-filter is the best yielding an almost 
2 dB higher noise suppression. 

In general, the multichannel marginal L-filters have bet- 
ter performance than all the other multichannel estimators 
included in the comparative study. The price which is paid 
for the superior performance is the complicated design pro- 
cedure. 
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Table 1. NOISE F~DLJCTIO?~ (in dB) FOR THE LAPLACIAN- 
MORGMSTE~Y DISTRIBUTION NOISE MODEL (FILTER 
LEKGTH ‘2; = 5). 

I I . 3K 
Filter IL onstant ] Ldge ; 

multichannel Dn-%T?vi 
1 signal ] 
I -4.931 I -4.8945 

Table 2. SOISE REDUCTION (in dB) FOR AN UNBIASED 

TWO-CHANNEL L-FILTER OF LENGTH YV = 5: WHEN li, 
ANDc2 ANDjORS &E BTIMATED. 

Method 
YK 

two- - 
I 

single- 3 e 
channel channel 

Rz and /1 are estimated, 
s is kno;: -12.5610 -10.4117 - 

Rz, &z and s are estimated -10.5719 -8.9349 25 
- - 49 

optimal unbiased filter -12.617 -10.494 - 
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