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ABSTRACT 

A new approximation of Euclidean distance in 2’ is pro- 
posed and a novel algorithm for the computation of Voronoi 
tessellation and Delauney triangulation is presented based 
on the above-mentioned approximation of Euclidean dis- 
tance. The proposed method has low computational com- 
plexity (of order 0(1/N)) and allows parallel implementa- 
tion. Mathematical Morphology is used to implement the 
Voronoi tessellation and the Delauney triangulation. 

1. INTRODUCTION 

Voronoi tessellation is a very important tool in computa- 
tional geometry [3], object recognition [2] and image anal- 
ysis [4]. Several important problems can be solved by em- 
ploying Voronoi tessellation, for example Delauney triangu- 
lation, convex hull, object decomposition into simple com- 
ponents (triangles). The computation of Voronoi tessella- 
tion is closely related to distance transformations as well as 
to the computation of skeletons by influence zones. All the 
above-mentioned research areas rely on the availability of 
approximations of the Euclidean distance function in a dis- 
crete grid that are as accurate as possible. The city-block, 
the chessboard and the octagonal distance functions have 
been proposed as approximations to the Euclidean distance 
function in [6]. Efficient sequential algorithms for generat- 
ing Euclidean distance maps are discussed in [8,14]. Sev- 
eral families of distance transformations are generalized to 
higher dimensions and are compared to computed distances 
with Euclidean distance in [9,13]. The local distances used 
in 3 x 3, 5 x 5 and 7 x 7 neighborhoods have been opti- 
mized by minimizing a multitude of criteria in [11,12,18]. 
An efficient version of the uniform cost algorithm is applied 
to general distance transformations in [16]. The decomposi- 
tion of Euclidean distance structuring element by employ- 
ing a set of 3 x 3 grayscale morphological erosions with 
suitable weighted structuring elements and combining the 
erosion outputs using a minimum operator is presented in 
[20]. Several approaches to the computation of skeletons by 
influence zones can be found in [7,15,17,19,21]. 
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A new approximation of Euclidean distance in 2’ is pro- 
posed and a novel algorithm for the computation of Voronoi 
tessellation and Delauney triangulation is presented based 
on the above-mentioned approximation of Euclidean dis- 
tance. Mathematical Morphology [1,5] is used to implement 
the Voronoi tessellation and the Delauney triangulation. 

Let X = {zi, 22,. . . , XN} be a set of N points defined 
on W & RN or W c ZN and d(.) be a distance function. 
The set of all points x E W that are closer to a given point 
x, E X than any other point x1 E X j # i is called Voronoi 
region of x;. It is defined as follows: 

V(i) = {x E W : d(x, x,) < d(x, xl) j # i} (1) 

The union of Voronoi regions for all zi E X is called Voronoi 
diagram of X, i.e.: 

Vor(X) = fi V(i) 

i=l 

(2) 

In the case of Z2, the definitions given above imply that 
the construction of the Voronoi diagram in 22 can be eas- 
ily implemented, if we are able to find a simple and efficient 
growth mechanism for all points in X. At each step m of 
the growing procedure, the points in 2’ having smaller dis- 
tance from x, than from any other x3, j # i should be 
appended to each zi E X. It is well known that Euclidean 
distance can be approximated in 2’ by using non Euclidean 
metrics described by employing the morphological operator 
dilation [6,9,11,20,21]. Therefore, we shall rely on the dila- 
tion operator. Its definition follows [1,5]: 

Y$B” = U Y-b = {x E 22 : B, l-l Y # 0) 

&B 

= {x E zz : B, t Y} (3) 

where B” is the symmetric of the structuring element B 
with respect to the origin, Yb is a translate version of the 
set Y centered at b. The symbol I states that the set B, 
hits Y [l]. 

The outline of the paper follows. The proposed approx- 
imation of Euclidean distance in 2’ is described in Sec- 
tion 2. The computation of Voronoi tessellation based on 
the above-mentioned approximation of Euclidean distance 
is treated in Section 3. An application of the proposed 
implementation of Voronoi tessellation to the derivation of 
Delauney triangulation of a polygonal object is presented 
in Section 4. 
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2. EUCLIDEAN DISK GROWING IN 22 

The most popular non Euclidean metrics that are used to 
approximate I’:uclidcan distance in 2’ are the city-block, 
the chessboard and the octagonal distance fuctions [6]. An- 
other class of more accurate distance functions is the so- 
called chamfer distances proposed in [9,11]. 

I,et d,(x, y) denote the Euclidean distance between two 
points I = (xi!zz) and y = (yi,yz) in X2, i.e.: 

d,(X! y) = (Zl - Yl)* -t (22 - Y2)* 2, Y E a2 (4) 

The following distance function between two points in 22 
has been proposed in an attempt to translate (4) to a for- 
mula suitable for 2’[6]: 

d,(r,y)=inf{kE,q::-0.5<d,(x,y)<k+0.5} (5) 

where n/ denotes the set of natural numbers. It is worth 
noting that (5) is not a metric, unless the triangle inequal- 
ity is relaxed. In this paper, a class of more accurate dis- 
tance functions than the uniform-step-distance (USD) and 
the periodically-uniform-step distance (PIJSD) discussed in 
[21] is proposed. 

First of all, let us recall that a structuring element of 
size k! B(k), can be considered as a L-fold dilation by the 
structuring element of unit size H [l]? i.e.: 

B(k)=B@B$...$B k=l,2,... (6) 
k 

A more general decomposition of B(k) is suggested in [lo]: 

f](k) = &~f?z$.~~@& k 2 1 B, C Bz C ... C Bk (7) 

where B, , Bz, , Bk are all symmetric compact sets in 2’ 
containing the origin. USD and PUSD [21] rely on (6) and 

(7). 
We propose the following class of distance functions: 

dn(x,y) = inf{k : xk t y} k EN 

xk = (&-l$&)U$! k>l ;&={X} (8) 

where S: is a suitable set of points that will be described 
later on. Another definition of distance function that re- 
sembles (8) is given below: 

dn(x,y) = inf{k :xk 1 y} k En/ 

xk = (x,&l $ fjk) - s; k 2 1 ; x0 = {x} (9) 

where - denotes set subtraction. The distance functions de- 
fined by (8) and (9) arc metrics in 22, if the sets St, S, are 
appropriately selected. Having defined the distance func- 
tions approximating Euclidean distance in 2’, we proceed 
to the design of the proper sets Si, SF that are included in 
(8), (9) and increase the accuracy of the proposed distance 
functions compared to USD and PUSD in approximating 
t,he Euclidean distance. 

When one constructs the Voronoi diagram of N points 
in 22, the fast computation of the distance between any 
two points is needed. At the same time, it is essential the 
distance evaluated by any metric to be as close as possible 
to Euclidean distance (4). The computation of (5) does not 

solve the problem, since its computational cost is high. Fur- 
thermore, a recursive calculation of the distance function is 
highly desirable, because it allows region growing. At each 
step, all equidistant points from the region center z can be 
appended to this region. A further reduction in the com- 
putational cost can be achieved by using the symmetries of 
the Euclidean distance function. The symmetry relations 
are listed below: 

d(0, Iyle’+) = d(O,lyle-.“) = d(o, (yleJ(““*@)) = 

d(0, lyleJ(“*@)) = d(o, IyleJ(3”‘2*e)) (10) 

where y = (yi,yz) E 2’ and ]y] = dm. In (lo), it 
is assumed that z = 0 = (0,O) without any loss of gen- 
erality. The symmetries described in (10) imply that the 
equidistant points to any point z according to (5) can be 
calculated form the set of points that satisfy the inequalities 
0 5 arg(x,y) 5 x/4 yielding a reduction of the computa- 
tional complexity to l/8 of the total effort needed. 

Let us select the structuring element required in (8) to 
be RHOMBUS [1,5]. Then, the set St is given by: 

s,+ = {W E 2’ : W E [(x,-l 63 2B) - (Xk--l $ B)] 

and dz(w, x) = Ic} (11) 

where 2B = B $ u. If St is chosen as in (II), then xk 
given by (8) implements a recursive method for growing a 
disk centered on 3: in 2’. At each step k, the disk Xk-i 
is dilated by B and the points of St defined in (11) are 
appended. The dilation operator by the RHOMBUS struc- 
turing element expands Xk-i in the horizontal and vertical 
direction. The appended points 5’: improve the discrete 
approximation of the disk. The sets S:, t = 1,2,. can 
be precomputed and stored. The storage space require- 
ments can be reduced to l/8, if (10) is taken into account. 
It is seen that the points in St are not included in the set 
Xk-i $ B and satisfy the condition d,(w, x) = k. The re- 
sulting disk growing is shown in Figure 1. It can bc seen 
that the circularity is very good. The points belonging to 
St, k = 6,8,9,11, . , are indicated by small circles. 

If the SQUARE structuring element [1,5] is used in (8) 
and (11) instead of RHOMBUS, it is found that some points 
in Xk-i $ B do not satisfy dz(w, x) = Ic. Therefore, the set 
of points violating d=(w) x) = Ic should be subtracted from 
Xk-i $U. This set of points is denoted by SF and is defined 
as follows: 

L!?, = {W E 2’ : W E [(x,-l $ R) -x&l] 

and d,(w,x) # k} (12) 

By using (9) and (12), another recursive scheme for growing 
a disk centered on x in 2’ results. 

The above-described methods are not of equal perfor- 
mance in terms of storage requirements. When (8) and (11) 
are used, the number of appended points versus disk radius 
increases almost linearly with radius. This number is small 
for most practical cases. When (9) and (12) are employed, 
the number of subtracted points versus disk radius has been 
found that also increases linearly with radius. In the later 
case, the rate of increase is more than double compared to 
the rate of increase in the former case. In the following sec- 
tion, an implementation of Voronoi tessellation that relies 
on the proposed class of distance functions will be treated. 
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3. VORONOI TESSELLATION 

A new method for implementing the Voronoi diagram of 
a given set of distinct points X C W C Zz is described. 
The proposed method finds the Voronoi regions of X C W 
rather than the Voronoi edges and vertices. It uses iterative 
region growing of the m-Voronoi region n;,,(i) of each point 
I, E X. Mm(i) is the set of points in W that have already 
been appended to 2, during the m previous growing steps. 
When two or more m-Voronoi regions collide, the collision 
points form subsets of the Voronoi polygons and the growing 
stops in that direction. This procedure is repeated until no 
further growth is possible in W. 

Let D,(i) be the m-neighborhood of xi, i.e., the set of 
points in W that are at a distance m from 2,. The m- 
neighborhood of 2, can be evaluated as follows: 

D,n(i) = {x E w : 2 E (X,(i) -X,-,(i))} 

where 

(13) 

{ 
({XI} CB B) u s,+ 

xm(i)= (x,4(i)m)us~ rx: (14) 

The points that belong to the m-neighborhood of a given 
point z, E X and to the m-neighborhood of another point 
2, E X, j # i are called m-border points of xi. The set of 
m-border points of z,, denoted by em(i) , is given by: 

em(i) = {x E (W -X) : 

x E u (IL(i) l-l n,(j))) j # i (15) 

~JE(x-lz.1) 

Let n,,,(i) be the set of points in (W - X) which belong 
to the m-neighborhood of a point z, E X but at the same 
time do not belong to a k-neighborhood of another point 
x, E X j # i where k 5 m, i.e.: 

h(i) = {x E (W - X) : z E (h-l(i) CB B) ; z $Z em(i) , 

I g N,-l(j) vx, E (X - {x,})} rr1 > 1 (16) 

where no(i) = {zi}. Then, the m-Voronoi region of zi is 
obtained by: 

N,(i) = Nm-l (i) U nm(i) ; No(i) = 0 (17) 

to xi E X has to be found. We say that a point 2, E X is 
adjacent to z,, if a distance value m (e.g., iteration of the 
growing procedure) exists such that the m-neighborhood of 
z,, D,,,(i), hits the m - l-neighborhood of x1, D,,,-l(j). 
Let J,,,(i) denote the set of adjacent points to x, at the m 
iteration. It is given by: 

J,(i) = {xl E (X - xi) : D,(i) n D,-,(j) # 0}, m 2 I 

(20) 
The union of J,,,(i) for all m E [l,&,,(i)], yields the set 
adjacent points to x1. Then, the Voronoi vertices are bor- 
der points where three or more neighboorhoods of adjacent 
points are met or the points where three of more boundary 
lines are met. 

By assuming that each growth step has the same compu- 
tational cost, the computational complexity of the proposed 
implementation of Voronoi tessellation depends only on the 
number of growth steps executed. The number of growth 
steps, in the worst case, depends on the half of the greatest 
distance between the points in X, denoted by d/2. When 
the number N of the points in X increases, d/2 decreases if 
a uniform distribution of the points in X is assumed. This 
means that the proposed implementation, has a complexity 
inversely proportional to N. In general, the computational 
complexity of the method proposed depends on the distribu- 
tion of the points in X. The more uniform the distribution 
the faster the method is. 

4. SIMULATION EXAMPLES 

The implementation of Voronoi tessellation described above 
has been employed in the derivation of Delauney triangu- 
lation. The Delauney triangulation is obtained by joining 
the object corners for each pair of adjacent Voronoi regions 
[3]. The Delauney triangulation of a polygonal object X is 
shown in Figure 2. Having defined how adjacent Voronoi 
regions are determined (e.g. by using (20)), we proceed t,o 
the computation of the set of object. corners. The set X, of 
the corners of this object can be obtained by morphological 
operations as follows. Let Xn denote set opening [5], i.e., 

XB=U{~~:B,CX}=(X9~‘)$~ (21) 
B‘ 

If k,,,(i) denotes the step in which the point xi cannot 
grow further, the Voronoi region V(i) of the point I, is 
simply: 

V(i) = Nkm,,(:)(i) (18) 
Therefore, the union of the k,,,(i)-Voronoi regions for all 
points in X yields the Voronoi diagram of the set X. The 
set containing the boundary points of a Voronoi region V(i) 
is denoted by F(i) and can be easily evaluating as follows: 

F(i) = {r E (W - X) : x E (Nk,,,(,)(i) - N/c,.,(i)-](i))} 

(19) 
The Voronoi edges and vertices can be found implic- 

itly. The Voronoi region of each point in 2, E X defines a 
Voronoi edge along its boundary line, i.e., x E F(i). The 
set of points 3: E e,,,(i) found during the iterative process 
also belong to the Voronoi edges. In order to determine the 
Voronoi vertices, the set of points in X that are adjacent 

Then, X, is given by: 

x, = XE u XE’ XE = x - XB XE’ = xc - (x”)B (22) 

where Xc is the complement of X with respect. to W. The 
corner set X, is used to obtain the Voronoi tessellation of 
X and subsequently its Delauney triangulation. 
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Figure 1: Euclidean disks in 2’ 

Figure 2: Delauney triangulation of a binary object. 
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