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ABSTRACT 

Two novel adaptive nonlinear filter 
structures are proposed which are based on linear 
combinations of order statistics. These adaptive 
schemes are modifications of the standard LMS 
algorithm and have the ability to incorporate 
constraints imposed on coefficients in order to 
permit location-invariant and unbiased estimation 
of a constant signal in the presence of additive 
white noise. The convergence properties of the 
proposed filters are considered. Both of them can 
adapt well to a variety of noise probability 
distributions ranging from the short-tailed ones 
to long-tailed ones. 

1. Introduction 

Adaptive filters constitute an important 
part of statistical signal processing. They have 
been applied in a wide variety of problems [l]. 
An effort has been attempted to combine the 
adaptive filtering and the nonlinear filtering 
T21. Extentions of the LMS and RLS alaorithms 
ha;e been proposed in [3]. Adaptive hybridfilter 
structures have been proposed in [4]. 

The main purpose of this paper is to extend 
the standard LMS algorithm by applying it to the 
adaptation of the coefficients of the L-filters 
in order to incorporate constraints imposed on 
the coefficients. L-filters are defined as linear 
combinations of the ordered data in the filter 
window, i.e. the output of the L-filter at time 
instant k is given by: 

I4 

y(k) = C aj xyjl (1) 
j=l The mean squared error J is given by: 

where xk (J) is the i-th largest observed data and 

Fhi; as;;;ed to be odd. It has been proven +[5,6] 
optimal L-filter for estimating a 

constant si 
P 
nal 

noise 
in the presence of additive white 

shou d be either location-invariant or 
unbiased. Let en denotes the kl unitary vector, 

i.e., en= [l, . . .,llT and a = [al,...,a,JT denotes 

the vector of L-filter coefficients. The 

necessary and sufficient condition for a 
location-invariant L-filter is: 

e: a = 1 (2) 

The sufficient conditions for an unbiased 
L-filter are: 

62: a = 1 

aj 5 a H-J+1 j=l,. . . , (M-1)/2 (3) 
and the noise distribution should be symmetric 
about zero. 

Two novel schemes are derived by rewriting 
the normal equations in a form that takes into 
account the constraints and by using 
instantaneous values for the correlations of the 
ordered noise samples in order to derive an 
estimate for the gradient vector. 

2. Constrained LHS adaptive L-filters 

A constant signal s corrupted by zero-mean 
additive white noise is considered. Thus, the 
input samples have the form x1- s t ni, where nI 

are i. i.d. random variables having zero mean. The 
noise distribution is assumed symmetric about 
zero. 

First, the adaptation formula for the 
location- invariant adaptive LMS L-filter is 
derived. Let nr denote the vector of the ordered 

noise samples, i.e.: 

n p = [ncll. nIzj ,..., ncH,lT (4) 

J = E[ (y(k)-s)' ] = aT R a (5) 

where R is the correlation matrix of the ordered 
noise samples. !tf (i,j) element is given by 
rIj= E[n(ljn(JIl, 1,~ =l,...,M. Let e denotes the 

(M-1)/2x1 unitary vector. The coefficient vector 
a is rewritten as: 
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a - [a : 1 I-eTaI-eTa2 1 a:]’ (6) 

where 7 al=[al,. . . . ,a 
(H-1)/2 

IT and a2=[a 
[H+3)/2' 

. . ..aH]‘. Similarly, nr can be partitioned in the 

form (6), i.e.: 

nr = 1 
n((M+1)/2) 

where is the median noise 
%+1)/2) T 

sample, 

nrl=["(1).;..."(("-l)/2)l 
and nr2=[n 

(M+3)/2) 

...,n(HJl . Then, the correlation matrix R is 

partitioned as follows: 

(8) 

where TR1= E[nrln:l], R,= E[nrlnr21, R3= RI, 

Wr2nr21 y r= E[n~~,+1~,2~l~ 
R4- 

rl= E[n 
(&4+l)/2)nrll 

and r2= E[n uH+1)/2)nr21. The MSE (5) is 

rewritten as: 

J = r - 2 iT p’ t iT R’ i (9) 

where 

a - [a 1 1 aT21T 

P’ = [reT-r: 1 reT-r:lT (10) 

r R, t reeT - 2rleT R, t reeT - 2rleT 1 

R’= 
R3 t reeT - 2r2 eT R, t reeT - 2r2eT 1 

The main advantage of this version of the MSE is 
that it leads to an adaptation scheme which does 
not use any heuristic technique to impose 
location invariance e. 

4. 
the normalization of the 

coefficients that wou d be derived by a direct 
application of the LMS algorithm to the 
minimization of the MSE given in (5). The 
steepest descent algorithm for the minimization 
of J in (9) is given by: 

estimate of the gradient vJ(k) is to use 
instantaneous estimates for p and R : 

s 

hk) - “Irn+~),2)( “:(n+l),2)e,-l- Vk) ) (12) 

is(k) = i,.(k) irT(k) - n~~n+l),2)eM~l~,T(k) + 

k 

+ nml+1)/2) 
(n 

k 

((M+l)/2)eM-1 - h,.(k) 1 eMyl (13) 

The LMS adaptation formula is written as follows: 

H( ktl) - i (k) + u [p(k) - i$k) i(k)] = 

= i(k) + P E(k) ( ir(k)- x~tn+l,,2,e,.l) (14) 

where e(k) = s - y(k), xr(k) = s exml t iir(k) and 

xm4+1)/2) - s + n((H+1)/2)* 
The coefficient for 

the median sample is given by: 

i (,+,,,,(k) = 1 - e:-, G(k) (15) 

We proceed next to the derivation of the 
unbiased LMS adaptive L-filter. Let L be the 
following [(M-1)/2 x (M-1)/2] matrix: 

(16) 

By using (3), the coefficient vector takes the 
following form: 

a - [a i 1 a 
WlU2 

1 a lT LIT (17) 

where a 
w+1u2- 

1 - 2 eTaI. The correlation 

matrix of the ordered noise samples exhibits a 
double symmetry which is expressed by the 
,equations: 

r2 = L rl, R3 = R;, RI = L R4 L, R,L = L R 
3 (18) 

By employing (18), 
following expression: 

the MSE is given by the 

J = r - 4 a: D t 2 a: R al (19) 

i(kt1) = i(k) t u [p' - R: a(k)] (11) 
where 

where u is the adaptation step and R’ is the 

symmetric part of the matrix R’. The Bracketed 
term is the gradient vJ(k) of MSE with respect to 
i(k). In the following, we shall drop the primes 
from p' and R;. The simplest way to develop an 

0 = re - r 
1 (20) 

R - RI t R,L t 2 ( r eeT - 2 rleT ) (21) 
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Again, a steepest descent algorithm can be 
written: 

bi(k+l) = $(k) + 2u ( o - RS o&k) ) (22) 

where Rs is the symmetric part of matrix R. The 

instantaneous estimates for D and R, can be 

derived as previously. Let w(k)=[n~lj-n&,..., 

k k 

n((H-1)/2)- n((H+3)/2)1 
T and v(k) = a:(k) u(k). 

After some algebraic manipulation the following 
unbiased LMS adaptation formula is obtained: 

al(k+l) = al(k) + 2ddk) [~ri(k)-n~~M+i),2~el + 

+ v(k) n:(M+l,,2, e ) (23) 

3. Convergence properties of the proposed 

adaptive L-filters 

In this section , the convergence in the mean 
of the location-invariant adaptive LMS L-filter by 
using the fundamental assumption [l] is proven. 
The proof of the convergence for the unbiased 
adaptive LMS L-filter is similar. 

Let c(k) denote the coefficient error vector: 

c(k) = a(k) - i 0 (24) 

The coefficient error for a(x+1),2 is c~~+~),~ - 

-e:-, c (k). If the LMS algorithm is rewritten in 

terms of c(k) and the expected values are taken 
then bv usina the indeoendence of the coefficient 
vector- from -the previous ordered sample vectors 
the following equation is obtained: 

E[c(ktl)] = ( I -v R; ) E[c(k)] (25) 

Therefore the mean of c(k) converges to zero as k 
tends to CU, when R: is positive definite and the 

the following inequality is satisfied: 

2 
o<p<- (26) 

A 
MX 

where A is the largest eigenvalue of the matrix 

R' . Si?ie R' is characterized by a large 

eigenvalue spriad, the rate of convergence of the 
location-invariant LMS adaptive L-filter 
determined by its smallest eigenvalue. 

The relation of the extreme eigenvalues of 
the matrices Rs and Rs with the eigenvalues of 

the correlation matrix of the ordered noise 
samples has been studied. Several indicative 
values of the eigenvalue spread of the matrix R 
found by numerical methods for various L-filter 
len ths and for the uniform, Gaussian and 
Lap acian noise distributions are given in TABLE 9 

1. It can be seen that the eigenvalue spread is 
increased with the increase of the L-filter 
length. For the same L-filter length the 
eigenvalue spread is increased as the noise 
becomes more long-tailed. It has been observed 
that the smallest eigenvalue of both RS and Rs is 

always larger than that of the matrix R. This 
implies that the proposed LMS adaptive L-filters 
exhibit a faster rate of convergence than an LMS 
adaptive L-filter which is controlled by the 
matrix R. It has also been observed that the 
largest eigenvalue of RS is the same with that of 

R whereas the largest eigenvalue of RS is much 

smaller than that of the correlation matrix of 
the ordered noise samples. 

Although the independence assumption used 
above is rather strong, it provides reasonable 
bounds on the overall time constant TV for the 

coefficients of the L-filter [l]: 

-1 -1 
ST d 

1 (27) 

ln (l-Nm,) ” ln (l-Mmi,) 

where Amin is the minimal eigenvalue of the 

matrix which controls the adaptation procedure. 
In the case of the location-invariant.L-filter of 
length M=5 and for Gaussian noise, substituting 
hm1n=0.108597 and AmdX=3.621358 into (27) it is 

obtained: 

276 9 TV 5 9208 iterations (28) 

It has been verified by simulations that the 
overall time constant for the coefficients a1,a3 

and as is about 1000 iterations and for a2 and a4 

2000 iterations respectively. 

4. Simulation Examples 

The proposed LMS constrained 
L-filters have been implemented using C 

adaptive 
langua e 

and have been tested for one dimensional signa s 4 
for uniform, Gaussian and Laplacian 
distributions. As a measure for convergence, we 
shall consider the coefficient estimation error 
A(a, k), which is defined by: 

A(a,k) - L M L ( ajW- aj o J2 
j=l 

(29) 

where a, J.0’ j-l,...,M are the optimal 

coefficients for uniform, Gaussian and Lpplacian 
distribution. It has been shown that the 
nonlinear adaptive filters can adapt we 1 P 

roposed 
to a 

variety of noise probability distributions 
ranging from the short-tailed ones (e.g. uniform) 
to the long-tailed ones (e.g. Laplacian). 

The erformance of the location-invariant 
LMS L-fi ter P is shown in Figure 1. The 
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convergence of the L-filter coefficients to the 
midpoint (aI-as-0.5, a2-. . .=a4-0) in the case of 

uniform white noise having zero mean and variance 
0.083 is shown in Figure la. The initial filter 
is chosen to be median. The adaptation step is 
v-0.1. The convergence of the L-filter 
coefficients to the arithmetic mean (al=...=as- 

0.2) in the case of Gaussian white noise having 
zero mean and unity variance is shown in Figure 
lb. The initial filter is again median. The 
adaptation step is chosen as p=O.OOl. The 
conver ence of the L-filter coefficients to the 
optima 9 filter reported in [S] in the case of 
Laplacian white noise having zero mean and 
variance 2.0 is shown in Figure lc. The initial 
filter is midpoint and the adaptation step is 
p=o.o03. 
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TABLE 1 
Eigenvalue spread of the correlation matrix 

correlation matrix of the ordered noise samples 

m uniform noise Gaussian noise Laplacian noise 

E[n2]=1 E[n’]=l E[n2]=1 

3 10.242639 10.560259 11.214899 

: 
47.036057 57.845813 74.734245 

127.001450 172.546034 254.631378 
9 266.162070 384.774761 973.757474 

Figure l:(a) Coefficient estimation error of the 
location-invariant LMS L-filter for uniform 
noise, when the initial filter is median (M-5). 
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(b) Coefficient estimation error of the 
location-invariant LMS L-filter for Gaussian 
noise, when the initial filter is median (M-5). 
(c) Coefficient estimation error of the 
location-invariant LMS L-filter for Laplacian 
noise, when the initial filter is midpoint (M-9). 

- 1666 - 


