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1 Introduction

The compuladion of the expected values and mo-
rnents of the order statistics has received mch al-
tention since the ad-1950"s, because of the pror-
nent position order statistics in the field of ro-
bust estimation [1] [6],[9]. The computation of the
second-order and product momenls appearing tn
the corrclation matrix of the order statistics is of
fundamental timportance, becanse the correlation
matrix of the order statistics s involved 1n the de-
signe of L-fillers both siugle-channel [7,8,10] as well
as muliichannel ones [13].  Purthermore, a need
for computing the corrclation malrix of the or-
der statistics 15 also arisen when Lhe asgessmenl of
the performance of adaptive nondinear hliers based
on Least Mean Squares (LMS) or Recursive Least
Squares algoritinns 18 to be pursued [11,12]. For
example, the stability as well as the rate of con-
vergence of 1L,MS adaptive L-filters depend on the
extreme cigenvalues of the correlation matrix of the

order stalistics,

'T'wo approaches for the computation of the mo-
ments ol the order stalisties can be lound e the
literature [6]. ‘T'he lirsl approach is based on contin-
uotis pareni distribntions whereas the second one
15 bascd on discrete parent distribuvtions.  How-
ever, ogder reenrsive algorithms constitute the core
of the procedures used in both cases [6,9]. Al
thougly, Lhe following analysis is focused on order-
recursive alpgorithms for continuous parent distri-
Lutions, the same conclusions can also be applicd
Lo order recursive algoritlims for diserele parent,
disteibutions. More specilically, when Lhe lenglh
of the [Lfilter increases, the order-recursive algo-
rithins becowe altlractive, becanse of Gherr com-
putation speed. Mowever, thewr accuracy becomnes
questionable. The lhnited accuracy s attnbuted
to a scrious propagaiion of accumulating ervors,
This fundanental remack has been observed carly
in Lhe statisbical community [2,3,6]. To the authors’
knowledge, upper honnds on the absoluie ageurmu-
lating civor in Lhe evaluation of the dingonal and
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off-diagonal clements of the correlation makrix of
the order statistics have not been derived rgor-
olisly.

The present paper focuses on Lhe error analysis
of an order-recursive algonthm for computing the
caorrclation malrix of Lthe order statisbics. Its ia-

jor contribution is in deriving upper bounds on the

absolule accumulating crror tnade 1 the compu-
Lation of Lthe clemenls of 1the correlation matnx of
Lhe order statisties due to round-off and intepgration
Crrors,

The cuthine ol this paper 18 as follows. The
cormnputation of the correlation matrix of the or-
der skatistics for contimous parcnl distributions is
brielly reviewed i Seclion 2. Upper bounds on
Lhe absolute accunmlating crrors made ain order-
recursive algorithems for computing the correlation
malnx of the order statistics are derived 10 Section
3. Numerical resulis are mncdnded and conclusions
arc drawn i Seetion 4.

2 Computation of the correlation
matrix of the order statistics

l.et. Ry be the correlation matrix of the order
slatistics of M independent identically distributed
random vartables which might be the samples of
wlile additive noise corrupling a constant signal
or Lhe corrupled signal values Lthemsclves mside an
L-filter window of leagth A1, ‘The (¢, 3} element
of the correlation malbrix s given by vaeie, j) =
|':[:I:{,-}.'l:(ﬂ], i, 3 = 0, ., M. Let us denote by I,
the correlation matnx of the order statistics when
ihe [-filter length s my, =1, ..., M. Ap order-
recursive algorithm for the calenlation of the ele-
meonkts of Ry, where M s the final L-lilter length
can be denved by exploiting the following recur-
rence relations [3] -{6]:

(i — e (L)t m—i+Drep{i— 1,1 1)

=t - Li—1) t=2 ... ,m (1)

(I — |J'*':r¢[i.j) - (j - I.}?'m{i - l:-J) + (?”' _

g e Dy (8 -1 = 1) =gy (i — L, j = 1)

| < i< J<m {2)

It is casily recogmzed that



(i) (1, 1) = E[x?]

(11) Al each recursion m = 2,..., M only one
simple integral 18 required to be evalualed
by nursenical integration. I'hs integral 13
given by [6]:

too
rm(l,]}:m/ 2 [1 - F(o)f !

£}

fz) dx (3)

(iit} Al each recursion m = 2,..., M only
(1 — 1) double integrals are requnired to
be evaluated by mumerical imtepgration.
I'hese inlegrals are given by {6]:

ra(1,7) = G _J}:”:” - i /'”" /W

eyl F () — F(@F 21— P f(e)
flyyde dy j=2,...,m (4)

‘Therefore, Lthe Lobal mumber of Lhe necessary simple
and double integrations are (A 1) and M{M -
1)/2 respectively. These nmbers are equal to Lhe
ones required by Lhe straaghtforward nonrecursive
computation of the elements ol the correlation ma-
irix of the order statisties stated in [7]. However, by
using the order-recursive algorithim outlined n.lmw,
{M - 1) correlation matrices are calculated by the
same cfforl. Thus, f the comparison 1 made will
respect to the average minmber of simple and donble
integrations per evaluated correlation malrix, the
order-recurzive algorithm ig prelerable Lo the non-
recurstve one. Having brielly descrrbed Lhe prine.
ples of order-recursive alrorithims for the computa-
Lion of the correlation mateix of the order statisties,
we proceed Lo Lhie analysis of the errors Lhal are in-
herent in this elass of algorithms.

3 LError analysis of the recursive
computation of the correlation

matrix

Although, the recursive computalion of the corre-
lation matrix 1s computalionally aitractive, 1t re-
sults in a serious propagation of accumulating er-
rors wilh the increase of the I-liller lenglh M.
in the following, upper bounds on the accurmulal-
ing errors present in the evaluation of the diago-
nal and off-dhagonal elements of Iips are derived,
when floating pownt arithmeltic s used. First, the
elements which are oblained by sunple numerical
imtegration and aflect a diagonal element. are de-
termined and then a bound on the accumulaling
error 1s derived. A simtlar approach 1s used {or the
ofl-diagonal elemeonts.

i1 can be proven by mathematical indiction that:

Proposition 1 The (1,1} element of the correla-
{ton malriz Rae 15 given by

i) = gy f(-n ()

:'r,-_l(M) ,
M—i+k+1

Moiti+101,1) (5)
where we assume thel rar_;ea (1), & =
0,...,1—1 represent sumple integrations and 7;( M)
15 the ({1 + 1) factorial polynemial of M,

A sitnilar cquation Lo (5} can be fond in |6, p.48].
[l ¢ be Che maxiermnn absolule relntive error
tmade tn the stnple inbegrations reguired o (5), i e.,

£ _ |
¢, = max | rirm £+&H-[~ ”|

raf—irkd (1]
kr_:ﬂ,,..,i—l,IZJ,...,fW (G)

where Ep{rpr_ive (1, 1)} 18 the absolute error
made in the numernical evaluation of a sunple nte-
cral using a quadralure formuola of 1 poinds, Then,

I'ropositron 2 The abselule necumndating crrvor
meade in the evalnatron of the dragonal elements of
the correlatron malrr due Lo round-off and anlcgra-
fion crrovs can be hownded as follows:

T |

[Fpr{d, 1) — rae (3, 2)] < (i —-1) i 10 Tl

¥ 2 -
i (A 1] (7}
where Pag(2,1) 28 the cvafuated (07) clemend,

rag (2, 4) 15 the exact (1,1) clemoent and b o1s the lenglh
af the manlissa.

It is worth noting Lhat Lhe wlegralion errors are
trealed moa siteilar way Lo the round-ofl errors.

Proof.

Any diagonal cletnent rar(f,¢) can be wrillen in the

form:
i— 1

?',l,f(f, ?) = Zﬁ'j; (3)

k=0

where az = ep Par_sppp (L B} The coeflicients ey
are given hy:

] i— | (M)
‘”‘"*(5_1}!( * )M—? G W

We shiall assnme thal Lhe error made o Che evali-
ation of {he term ag 1% due Lo:

(a) the round-off errors tn Lhe coellicrents oy,
ancl

(1) the errors in ras_jpk4 (1, 1)



Let us denote the relative error made in the numer-
ical evalualion of a single integral by e,. Then, the
imexact resall of the computation i1s given by:

(10)

P —ipeer (1, 1) = rarcigrsr (1 1)(1 3 €f)

If the incxact term ag is denoted by ayg, Lhen:

(11)

where {l[.] allows for floating-point arithmetic errors
(e.g. round-oll errovs}.

First, Lthe round-off error made in the coefficient
¢p 18 cslhimated. We maintam thal the maximum
number ol product-terms in the binormmal coellicient

i — |

£ )’k:“r”-:i_liﬂ{i—l). et 2 = 2p+

1, p € N {N is the set of natural numbers). For
the above-tnentioned binomial coefhicient we have:

iy = Ofex] Pprigrar (1, 1)

(—1)-(i—k) ;
k - E 4 -
Uil Gl k> (i — 1)/2

(12)
It is scen Lot if & < (£~ 1}/2, the number of prad-
ucl ferins i the numerator 15 & and an additonal
numboer of & product terins are added from the de-
nonnnator. (o tolal, 28 terms have resubled. For
k= p, we have the maxiiuum nuinber of produoct
Lermns, e, (£ 1Y derms. With same reasoning,
20 - 4 - k) tenns result f £ > (0 - 1)}/20 ln the
later case, 1lois casily vecognized that the number
of prodnct Lerms is lesgs than (i 1}, For { even, 1.e,,
i = 2p, p e N, we have two binotal coellicients
with the naomaen number of product derms, those
lor & = p | and & = p.

Forethermore, the terme m_ (MM 8- F &+ 1
is a product of (i - 1) terms. In addilion, the term
L/(i-- 1300 interpreted as a product of (2--1) Lerims.
Therelore, ¢ 15 a prodinet of 3(i — 1) Lerims. We
clann ihat:

Hlep] = op( ] 4 e ) willy Jel < (31— N/270 (13)

where & 1s Lhe length of the mantissa.
By ceplacng (10} and (13) wto (1T) we obtain:

ap = oagp (1 e ) {1 +er)=ap (1 +eq +

30N o2 (14 ¢4 + €1) (14)

If ¢; is an upper bound for ¢, then:

lea, | = |e, + €] < (37 —4) 270 4 ¢ {15)

We muaintain that:

i) .
”[}_:”-k] = ao(1 +eo) +a(l+er)+ -+
k0

i1 (! + e_1) (16)

6.2 -

where ag are the “noisy” sum-terms (14) and

leol < (i=1)27% Jej) < (i=7)27% 5=1,...,i~1
(17)
The following simplifications can be made:
(1 +eq,)(1 +en) 1 +eq, +ep
=14 ¢
(1 +euJ){l +e5) ~ | + eq, + €
=14¢ j=1,... i1 (18)

By using {15) and (18) we obiain:

leb| < lea, |+ leal < [ — D+ (3i —4)) 27 + ¢
=(4i -2 4

o3t < Jea, |+ e; | < [(E= )+ (B3 —4)] 27° + ¢4
=(H—j -2+ ¢ (19)

'The accumulating error 1n {16) can be bounded as
in numerical analysis literature [1);

i1 i—1 -1
Y ) = > al < (A= 127 + 6] > fas]
ki) k=1 k=1

(20)
An upper bound for the last term in (20) can be
derived as Tollows:

1-- | 11
{M] i ]
LJH“ I } L}_‘,( fi )
TAf - :|L||[] l) TT:-l(M} 1—[
Mok (T"“'._ 2_1]( )
Bla?] - {_:?l-;iT! mi (MY B[z (21)

where we hiave nsed 1hal.:

M i k1]
rareier (L D) < DY raien (L0
[
= (M —i+ k1) E[x*] and {22)
i‘( v ) e 95! (24
k=1l
By replacing (21) into (20} we obtam thal:
i1
[#ar(8,28) — rae (i) 1)] < G M- 1) 27" +
+e1) w1 (M) Bla®] (24)
Q. 1.0,

The elements of Lhe correlation matrix of the or-
der statistics obtatned by a numinerical computation
of a double integral and allect the ofl-diagonal cle-
ments of B are determined subsequently,

{[.3



Proposition 3 The (¢, 7) clements of the correla-
tion matriz Ry are given by:

= Z o (i0)
i-1-1(M) L( ) [fo 5o

=1 1=1

rv{i, J) =

[IG i+t =2) rpipa(1G — it m)
t=2
t=2,... . M-I, 7> (25)
where 7. (M) = |.

FProposition .} can be proved by mathematical in-
duction. 1hie to lack of space, the prool of Propo-
stbion 3 will he omitted. An equation equtvalent
to (25} baving a dilferent arrangement of its terms

glso appears in [2].
L.et €9 be the maxisnun absolute relative errorp

rade in the double mlegrations required i {(2H),
1.e.,

Epglrm—ip(l,j — 24 n)}

£o == IMax e

2 | raf _.t+;(]1j'—t—|—ﬂ) =
i=2. . M~1, j=i+l,.. .M
f=1,.. M, n=1,.. { {26)

where Epgi{rar—ipi(1,7 = ¢+ n)} denotes Lhe ab-
solute error made in the numerical evalualion of a

double integral (1) using a guadrature formula of
P x () points. We maintain that :

Proposition 4 The absoluile error in the evalu-
alion of the off-diagonal elements of Ryy due lo
round-off and tntlegration errors s bounded as fol-

lows:

[Far{i, 7) —raa (2, 3] < J_(;—_]}T mi—2( M)

G~ 12 +le§(}:})
(1)

)|rM_,-+;(l,j—f+n}| (27)

If ¢4 is the maximum absolule relattve error made
i e evaluation of Lhe reguired donble mtegrals,
Lhien Lhe relative error e, in a numerical evaluation
ol a double integral is bounded by <9, Lo, &, < €3.
It is recognized that any elemient. rae(2,7), 7 > 1
given by (25} is a suvm of (2 -+ 1}/2 prodact ternins,
Let us adopt the follewing notation {or Lthe product,

terms involved in the computation of rae(s, §):

an
(28)

Ay oy o, ey -0 3 Wty M2e gy

T114 00+ 4 Ty

The Lerm apg s given by:

I

Ayl = ;37 Wi

G 1)l 1 1)

a(M)rag g (1, (29)

Let ey, be Lhe relative error made in its evaluation.
(Consequently, its aclual (inexacl} value i defined

as:
K ayy = ap () +Feq,) {30}
wliere:
Jean,| < [2i = 1) = 127" 1 s
< AWi— D2t ey (31)
For Lhe term aqy given by
(¢ - ) PR
oy = [z—— I)l AlMYCM g1 )
rag—ipe(l, 0 14 1) (432}
we obltan:
Jewa | < [2(1 - 2) = 1] 27% 4« (33)

In o sientlar manner, lor Lthe term aqy delined as
follows:

: — |
oy = -~({ — 1])| Mi—a(M)(F—-t)rariq2(l,j—142)
(34)

1. can be shown that

(35)

term oy, =

leay, | <2 —2) 27" 4

In !.,t*uf*ml for 1he product,

3,0, n=1,... b
I G D S G
U =G -

(T
(:1:']1 ) H(M_j+**}l_[(j—i+f.—2}

a—l (=2
M —ipt(LF— i+ 7) (36)

) mi (M)

we have:

A = (1 + €4, ) will

ol < B~ 1)+ (U= D] 271y (37
It can be seen thal the maximun crror occurs for

{ = 1. As a resull, we have;

ea, | <AGE—1)27" 4 ¢y (38)
Comparing (38) with (31), (33) (3H), we clain
that the relative error i each product term can
be bounded as follows:

lel < A(i = 1327" fo¢ (3%)



Therelore, Lhe following inequality for the accurmi-
lating crror in Lhe evaluation of ras(i, J) can be
written:
. . i+ 1 , e
(i) - rari, )] < DG - 2 4

j !
] )_: Z |@inl (40)
I n=I
Since
i—n rL
T { M) H(M—j—FS) H(j~—1+i - 2)
a=1 t=12
< Tfi--.g(ﬂr’f) (41)
the incquality (40} can be rewritten as:
. . o Wi+ 1
1'-"};[(1,}] o TM(la.j}l < ZEE — 1))| TT;'_..E(M}

i — 1
{~1

) lrar_ipt(1, 4 — 14 n)] {42)

[4(:’-1}2*“+le§(
32

JO |

t— 1

n— 1
Q.I5.1),

4 Numerical Results and Conclu-
SIONS

The dominating factor in the bound (7) on the
absolute acomnniating error in the diagonal cle-
ments is the i-factorial polynomial of M, mi1{M).
Table | highlighls its dominance. 1L s scen that
this faclor resulls in a serious amplification of Lhe
round-off aud mlegration errors.

A similar consideration is made for the bound
(27) on the accunlating error present in the oil
diagonal clements. The weighting coetlicient on the
maximum absofule relative error i the double -
tegralions for M = 5 and a Gaussian distributed
random variable @ is tabulating in ‘Table 2. T'he
table [1, p. 417] has been used to calculale the
entries of ‘Table 2. In general, the numencal evali-
alion of a double integral results in relatively large
srrors. ‘U'he recursive nature of the computatiorn
(2) amplifics these errors.

The noise sensitivily analyzed above may resuli
‘n & violation of the positive seridelnite character
of the evaluated corrclation matrices for large filter
lengths. In conclusion, arithmetic errors is the cost
of the fasl corrclation matrix calenlations by using
recursive techniques.
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Fable 10 Weighting coefficient on the maximum absolute relative error tn simple ntegrations ¢, {or

M =5 and E[z?]) =1

—; I T
i V|| 2 [ |
(M) [ 571720 7807120 | 120
rziy -t (M) [ 5140 | 120 | 160 | 80

Table 2: Weighting coeflicient on the maxiimum

M = b and Gaussian pdf

)

TN 0]
3

absolute relative error in

() T TRAY
4
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Mmiea(M) 1B
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total 225 | L1LAST | 40,546

cdlowble micgralions ¢y, lor
COR
B3

20
321 [h.i29g

60
I1R1G

1944 1 307.36°

T1& IH




