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ABSTRACT

A variant of Learning Vector Quantizer (LVQ) based on a
multivariate data ordering principle, namely the marginal
median Learning Vector Quantizer (MMLVQ), is proposed
in order to overcome the drawback that the estimators for
obtaining the reference vectors in LVQ do not have robust-
ness either against erroneous choices for the winner vector
or against the outliers that may exist in vector-valued obser-
vations. The asymptotic properties of MMLVQ are studied
as well. It is shown that MMLVQ outperforms the (linear)
LVQ with respect to the bias in estimating the true cluster
means both for a contaminated Laplacian data model as
well as for a contaminated Gaussian data model. As far as
the mean-squared estimation error is concerned, it is proven
that MMLVQ outperforms the (linear) LVQ in the case of
a contaminated Laplacian data model.

1. INTRODUCTION

Neural networks (NN) [1, 2] is a rapidly expanding research
field which attracted the attention of scientists and engi-
neers in the last decade. A large variety of artificial neu-
ral networks has been developed based on a multitude of
learning techniques and having different topologies [2, 3].
One prominent example of neural networks is the Learning
Vector Quantizer (LVQ). It is an autoassociative nearest-
neighbor classifier which classifies arbitrary patterns into
classes using an error correction encoding procedure related
to competitive learning [1, 2]. In order to make a distinction
between the (standard) LVQ algorithm and the proposed
variant that is based on multivariate order statistics, the
LVQ algorithm will be called linear LVQ algorithm here-
after.

Let us assume a sequence of vector-valued observa-
tions x(t) € IR and a set of variable reference vectors
{wi(t);w; € RP,i =1,2,...,K}. Let w;(0) be randomly
initialized. Competitive learning tries to find the best-
matching reference vector we(t) to x(¢) (i.e., the winner)
where ¢ = argmin; || x — w; || with || - || denoting the
Euclidean distance between any two vectors. In the linear
LVQ), the weight vectors are updated as blocks concentrated
around the winner, i.e.,

wit+1) = wi(t)+a)[x(t) — wi(t)] VieN(t)

wit+1) = wi(t) Vi Ne(t) (1)
where a(t) is the adaptation step and N (¢) denotes a neigh-
borhood around the winner. In the following, we use the no-
tation n instead of t to denote discrete events. It can be eas-

ily seen that the reference vector for each class i =1,..., K
at time n + 1 is a linear combination of the input vectors:

wi(n+ 1) = a(n)ci(n)x(n) + Za(n —k)-
k=1
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l=n—k+1

where ¢;i(j) = 1,i=1,...,K, j = 0,...,n if the input
vector x(7) has been assigned to class 4, and 0 otherwise.
It can be shown than only in the special case of a single
data class (i.e., c1(l) = 1, VI € [0,n]) and for the adapta-
tion step sequence a(n) = 1/(n + 1) the winner vector is
the arithmetic mean of the observations that have been as-
signed to the class (i.e., the maximum likelihood estimator
of location). Neither in the case of multiple classes that are
normally distributed nor in the case of non-Gaussian mul-
tivariate data distributions the linear LV(Q yields optimal
estimates for the cluster means. In general, linear LVQ and
its variations suffer from the following drawbacks:

1. They do not use optimal estimators for obtaining the
reference vectors w;, i = 1,..., K that match the pdf
fi(x) of each class i =1,..., K

2. They do not have robustness against erroneous choices
for the winner vector, since it is well known that linear
estimators have poor robustness properties [5, 6].

3. They do not have robustness against the outliers that
may exist in the vector observations.

In order to overcome these problems, we propose a variant of
Learning Vector Quantizer, the marginal median Learning
Vector Quantizer (MMLVQ), that is based on a multivari-
ate data ordering principle. Its asymptotic properties are
studied as well.

2. DERIVATION OF MMLVQ AND STUDY OF
ITS ASYMPTOTIC PROPERTIES

There is no unambiguous, universally agreeable total or-
dering of N p-variate samples xi,...,xny where x; =
(210, T2iy .- pi)Y, i = 1,...,N. The following so-called
sub-ordering principles are discussed in [7]: marginal or-
dering, reduced (aggregate) ordering, partial ordering, and
conditional (sequential) ordering. In the following, we shall
confine ourselves to the marginal ordering principle. The
marginal ordering principle implies that the multivariate
samples are ordered along each one of the p-dimensions:

Ty STy < ... <wywy t=1,...,p (3)

i.e., the sorting is performed in each channel of the multi-
channel signal independently.

The Marginal Median Learning Vector Quantizer (MM-
LVQ) relies on the notion of the marginal median order
statistic that is defined by:

T
(:131(,,+1), La(v41)s -+ 7$p(ll+1))
for N=2v+1
Xmed = (ﬂﬂl(v)+w1(v+1) Tty | (4)
5 Yoy 5

for N = 2v.
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Let us denote by X;(n) the set of the vector observations
that have been assigned to each class ¢, ¢+ = 1,..., K until
time n — 1. We find at time n the winner vector w¢(n) that
minimizes || x(n) — wi(n) ||, ¢ = 1,..., K. The MMLVQ
updates the winner reference vector as follows:

we(n + 1) = median {x(n) U X.(n)}. (5)

where the median operation is given by (4). Thus, all past
class assignment sets X;(n), ¢ = 1,..., K are needed for
MMLVQ.

In the sequel, we shall study the asymptotic properties of
MMLVQ in comparison to those of the linear LVQ. It is well
known that when the learning procedure of the linear LVQ
is led to equilibrium, it results in a partition of the domain of
input vector-valued observations called Voronoi tessellation
[1, 4]. Let V;(W) denote the Voronoi neighborhood of the
1-th output neuron with respect to the Euclidean distance
metric, i.e.,

ViW) = {xeXCR[|x—wi < x—w|
I=1,...,K,1#i}  (6)

where W = (w{ | . | WK)T. The expected stationary
state of the llnear LVQ is given by [4]:

fv-(W) xf(x)dx
Wi=Ew,]="2W_""" " ;1 K (7
fvi(W) f(x)dx

It is seen that (7) gives an implicit definition of the sta-
tionary state of LVQ. Let g;(x) be the conditional pdf of
X, on the condition that x is restricted within the Voronoi
neighborhood of class . It is given by [10]:

f(x
g0 =1 ®
Joscw £ ()
Let us denote by gi;(z ]) the margmal pdfs of g;(x) along
each dimension j, j =1,.
g1 (o) = / (<) )
Vi (W)

T .
where x; = (z1,...,%j-1,%j+1,...,%Zp) . The stationary

state of the MMLVQ will be Wi = (Wasi,- o Warip) T
where wys;; is the populatlon median of the marginal dis-
tribution g;; (z;), i.e.,

wMij B
/ gij(zj)dz; = / gij (z;)dz; (10)
A Warij

with [A, B] being the domain of g;j(z;). In order to main-
tain simplicity in our theoretical analysis the asymptotic
properties of both the linear LVQ and the MMLVQ will be
considered for 1-d contaminated distribution models of the

form:

f(x) =€ fi(z) + (1 —€) fa(x) (11)
Two contaminated data models are studied, namely, the
contaminated Laplacian data model where f;(z) are Lapla-
cian pdfs given by:

1 |z — mi|
i(r) = exp |—v2 —4 12
o) = s e VRIS (12)
and the contaminated Gaussian data model with f;(z) be-
ing Gaussian pdfs N(m;, o), i = 1,2. Without any loss of
generality, we assume that m; < m». First, the expected

stationary state of the MMLVQ is derived and is compared
to the expected stationary state of the linear LV(Q) for the
distribution models under study. To this end, the thresh-
olds determined by the linear LVQ and the MMLVQ at the
equilibrium for discriminating the two input data classes
must be known. In addition, the thresholds determined by
the linear LVQ and the MMLVQ should be compared to the
threshold predicted by the statistical detection theory, i.e.,
the threshold T,p¢ that minimizes the probability of false
classification [9].

2.1. Contaminated Laplacian model
The probability of false classification is given by:

P.(T)=e¢ f T exp[ V2le=ml ml‘] dz+
+(1 =) iz [l e [VREE] do

In order to differentiate (13) with respect to 7', we have
to make certain assumptions about T. It can be shown
that this problem (i.e., to find Topt) is well deﬁned if and
only if m; < T < mz, or equivalently if + <e< Lo

I
with v = exp [%(mz — ml)]. In this case, the optimal

(13)

~FF1

threshold is given by:

m1 + ma o €
Topt =———+ —In|{—— 14
Pe 7 T 2 (1 - e) (14)
For e = 0.5, we verify that (14) yields Tope = (m1+m2)/2 =

Tmid. The Voronoi neighborhoods (6) determined by the
linear LVQ) are given by:

Vi(W) ={z <Tiwvq} V(W) ={z>Twq} (15)

w1 tws
52

with Trvq = Let us assume that Tovq = T is
known. Then, by using (7) we obtain:

T = iy {emi =5 (T+ 55 exp [VE (552)] +
FRES (T - %) exp [V2 (%)]}
where "
F(I):E {1-1 exp[-v2(E=)]}+ (17)

+i3= exp [V2 (F52)].
For the second neuron, we have:

1
1—F(T)

wo = {[E m1+(1—e) MQ] —F(T) El}. (18)

It can easily be shown that w; ~ m; and ws ~ my, if and
only if (m2 —m1) > o. Furthermore, for ¢ = 0.5, we have
Tivg = Tmid-

In the case of MMLVQ), it can be proven that its sta-
tionary weights are expressed in closed-form formulae. Let
¢ =exp[vV2(™=22)]. f & = e+ (1—¢)(and A =
[F(T) — 2€]” +4€(1—€) ¢, then the stationary weight of the
first neuron of MMLVQ at the equilibrium is given by:

F(T
my + 2 In [ ( )}

Wit NG}

@y
if F(T) < &,
_ _ o F(T) - 2¢ + VAL
WM1 = mi + E In [W}

if F(T) > ®;.(19)



In an analogous fashion, it can be proven that if & =
e(1=¢) and Ay = [1 + F(T) — 2¢]” 4 4e(1 — €) ¢ then, the
stationary weight of the second neuron of the MMLVQ at
the equilibrium is given by:

WMz = m2—L1n|:[26_1_F(T)]+ A2:|
vz 2eC
if F(T) < ®»
. _ 9, [1—F(T)}
M2 = M2 ﬂn 1— o,

if F(T) > &,. (20)

The sets of equations (16), (18) and (19), (20) define im-
plicitly the stationary state of both the linear LVQ and the
MMLVQ in terms of T'. The following simple algorithm for
solving the above-mentioned sets of equations is proposed:

1. Begin with arbitrary w; and w2

2. Set T equal to the midpoint of w; and wa.

3. Re-evaluate w; and w» for the specific T of Step 2.
4

. If the absolute error in w; and w» between two succes-
sive iterations exceeds a proper threshold, go to Step
2.

(For the MMLVQ, w1 and w» are replaced by was1 and war2
respectively.) Figure 1 depicts the thresholds determined by
the linear LVQ, the MMLVQ as well as the optimal thresh-
old predicted by the statistical detection theory for a data
set having pdf (11) with m; = 5, ms = 10 and ¢ = 3 for
several € € [0.2, 0.8]. The bias in estimating the mean of
the dominating cluster, i.e., the quantity

[w2 — mo|

(or, |2 —ma| ) for e < 0.5, and
. — m.| (21)

(or, |war1 —ma| ) fore>0.5

is plotted in Figure 2. In the same figure, we have also
included the bias that the conditional means which corre-
spond to the decision regions predicted by the statistical
detection theory yield. It is clear that the MMLVQ pro-
duces asymptotically less bias than the linear LVQ.

From Figure 2, it is evident that the linear LVQ and the
MMLVQ are not unbiased estimators of the data cluster
means. Accordingly, the asymptotic variance V (T, F), T =
LVQ, MMLVQ defined by V(T, F) = [IF(x; T, F)* f(x)dx
where IF(x; T, F) is the influence function of 7 at F [5, 8]
does not take into account the bias introduced by each esti-
mator, since it is simply the variance of the random variable
/n(T, —T(F)) that is normally distributed with zero-mean
as n — oo [6]. Observe that the asymptotic variance of
the estimator 7 at model F is essentially the upper bound
of its variance, i.e., V(T,F) = max, E [(Tn - T(F))2] =
E [(Tn - T(F))2] |n=1. Therefore, the asymptotic relative
efficiency (ARE) of LVQ and MMLVQ defined by:

V(LVQ, F)

ARE(MMLVQ, LVQ) = V(MMLVQ, F)

(22)

is not appropriate for comparing the performance of the two
estimators. We propose the following modified ARE:

max, E [(LVQ, — M)’]
max, E[(MMLVQ, — M)?]
(23)
where M = (m; | ... | mg)” is the vector of the uncon-
ditional means to be estimated. The modified ARE (23)

ARE(MMLVQ, LVQ) =

has been evaluated for the contaminated Laplacian distri-
bution model under study. In Figure 3, the modified ARE
is plotted for several € € [0.2, 0.8] and o. It can be seen
that MMLVQ outperforms the linear LVQ with respect to
the mean-squared estimation error as well.

2.2. Contaminated Gaussian model

For a 1-d contaminated Gaussian model, it can be shown
that the optimal threshold is given by:

_ mi1+me o? €
Topt = "5 ml_m2ln(1_e). (24)

Let erf(a) be the error function erf(a) = ﬁ Iy exp(—%)dt

[10]. In an analogous fashion, the stationary weight of the
first neuron of the linear LV(Q) can be expressed in terms of
Tivg =T as follows:

T—m1
o

+
+(1 —€) myerf (%)] -z [6 exp [_% (T_Gm1)2]

+(1 —¢€) exp [—% (%)QH }

where

w1 = ﬁ{%[eml-i—(l—e)mz]-i- [e maerf (

(25)

T—MQ

F(T):%+eerf )+(1—e)erf( ) (26)
The stationary weight for the second neuron is given by
(18). Unlike the contaminated Laplacian model examined
above, the stationary state of MMLVQ is now defined im-
plicitly by:

(T—m1
g

ﬁ [% + eerf (M) +(1—e)-

- erf (M)] =05 (27)
o (22 0

- exf (L“U_ me )] = 0.5. (28)

The algorithm proposed above for deriving the stationary
weights of LVQ/MMLVQ in the case of a contaminated
Laplacian model can easily be modified to solve the set of
equations (27), (28) as well. It has been found that MM-
LVQ introduces smaller bias in estimating the mean value
of the dominating cluster than the linear LVQ) for any e. For
€ < 0.5 (or, € > 0.5) and Gaussian pdfs with little overlap,
the smaller bias of MMLVQ is attributed to a threshold
shift so that Tumrvg < Tive (TMMLVQ > TLVQ). When
the Gaussian pdfs have significant overlap, the smaller bias
of MMLVQ is due to the replacement of the conditional
means by the conditional medians. For ¢ = 0.5, both the
statistical detection theory as well as the LVQ and the MM-
LVQ result in the same threshold. Therefore, they attain
the same probability of false classification. However, MM-
LVQ introduces smaller bias in estimating the unconditional
means of both clusters than the LVQ. However, the linear
LVQ outperforms the MMLV(Q with respect to the mean-
squared estimation error. Although, the performance of the
MMLVQ is improved as o increases, even in this case, the
linear LVQ is better than the MMLVQ.

3. EXPERIMENTAL RESULTS

We have tested the performance of the proposed MMLVQ
against the one of the linear LVQ in the case of an 1-d data
set that is described by the pdf

f(@) =pU(=5, 20) + (1 —p) [e fi(x) + (1 =€) fa(z)] (29)



where U(—5,10) denotes a uniform pdf in the interval
[-5, 20] and fi(z) are 1-d Laplacian pdfs (12) for p = 0.2,
e = 0.5, mi =5, me =10 and o = 2. A data set having
pdf (29) is a severely corrupted one due to the presence of
the uniformly distributed outliers with probability of oc-
currence p = 0.2. Figure 4 depicts the output bias of the
neuron that attempts to estimate the unconditional mean
of the first data class described by fi(z) both for the MM-
LVQ (i.e., |E[wari(n)] — 5]) as well as for the linear LVQ
(i.e., |E[wi(n)] — b|) versus the iteration number n. It is
clear that the outliers produce more output bias in the case
of the linear LVQ than in the case of the MMLVQ. The ex-
pected values of the LVQ and MMLVQ outputs have been
found by averaging the results on 1000 independent runs.
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