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TWO-LAYER LEARNING VECTOR QUANTIZER FOR COLOR IMAGE
QUANTIZATION
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Department of Electrical Engineering, University of Thessaloniki,
Thessaloniki 540 06, GREECE

A novel two-layer LVQ) archifecture is proposed which incorporates second order
statistics in its training phase and allows training parallelism by splitting patterns into
groups. The learning and recall procedures for the LVQ networks in the first and
second layer are described. The proposed algorithm is based on statistical tests on the
mean vectors and the dispersion matrices. A simplification based on a proximity test
is presented. The application of the two-layer LVQ to color image quantization is also

discussed.

1. INTRODUCTION

Neural networks is a rapidly expanding research
field which attracted the attention of engineers and sci-
entists in the last decade. One of the most prominent
neural networks in the literature is the Learning Vector
Quantizer (LVQ) [1,2]. It is an autoassociative nearest-
neighbor classifier which classifies arbitrary patterns
nto p-many classes using an erros-correction encoding
procedure related to the competitive learning. It has
already found extensive application for phoneme recog-
nition {3,4] as well as in image processing, control and
combinatorial optimization [2]. The dynamic weight-
ing of input signals and a definition of neighborhood in
the LVQ by a minimal spanniag tree are proposed in
[5]. The modification of the LVQ by using a differential
competitive learning algorithm is discussed in [6].

The main contribution of this paper is the design of
a novel two-layer LVQ architecture which incorporates
second order statistics in its training phase and allows
training parallelism by splitting patterns into groups.
The proposed two-layer LV(Q architecture is shown in
Figure 1. It is comprised of N LVQ networks working
independently in the first layer and a single LVQ net-
work in the second layer. The training patterns of the
first layer LVQ)'s are input patterns. The training pat-
terns of the second layer LVQ are the weight vectors
of the first layer after the convergence of the first layer
IVQ’s. The second layer classifies the weight vectors
provided by the N networks of the first layer. Let us
suppose that the N EVQ's of the first layer classify ¢-
dimensional data into p-many classes, then the second
layer LVQ has ¢ input nodes and N x p output nodes at
most. Some of them have been trained by patterns ex-
tracted from the same population, therefore they must
be merged. Some others are reference vectors associ-
ated with different populations, therefore they must be

preserved. The incorporation of homogeneity and prox-
imity statistical tests based on second-order statistics
in the second layer LVQ learning algorithm is proposed
in order to group partial results provided by the first-
layer LVQ’s and considered in the evaluation of the
final winner vectors. Thus, the proposed learning al-
gorithm takes into account the presence of outliers and
provides more accurate reference vectors for the clus-
ters presented in the input patterns. Furthermore, the
proposed two-layer LVQ) architecture is easily paral-
lelized and consequently makes faster computationally
intensive tasks such as color image quantization and
segmentation.

2. TWO-LAYER LVQ ALGORITHM

In the following, the learning and recall procedures
of the first and second layer LVQ's are descrilbed. The
learning procedure of each first layer LVQ is the typical
one of a multiple winner LVQ [2,3}. The recall proce-
dure of each LVQ network in the first layer is applied
only to the patterns used for the training of this net-
work. It provides the necessary information about the
sample mean vector and the sample dispersion matrix
of the classes produced at the output of the network.
Let V; = (vi,...,vq) I=1,...,p be the weight vec-
tors for a first layer LVQ. The recall procedure of a
network in the first layer has the following ste ps:

1. Initialize the sample mean vector my, the sample
dispersion matrix 8; and the number of patterns n;
associated with each class.

m;(0) = 0451 5;(0) =0y, n;(0)=0 7=1,... ,1(9 )
1
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2. Determine the class C, represented by the weight
vector V, to which the training pattern X(%) is most
closely associated with.

X(k) € Cg i | X (k) — V| =I;§{1{IIX(k) - Vil} (@)

3. Increment the number of patterns belonging to
C, by one and update the sample mean vector and the
sample dispersion matrix of this class.

ng(k) = n{k—1)+1
d,(k) = X(k) - my(k ~ 1)

my(k) = my(k~1)+ ﬁdg(k)
Q) = Q-1+ e m af )
S8 = s Qu(h)

For the remaining classes j = 1,...,pj # g, the num-

ber of patterns, the sample mean and the sample dis-
persion matrix are not altered;

) =) i) = D) (6) =ik
4
The LVQ network of the second layer is used to find
the input vectors which are candidates for merging or
not. The eriterion of minimum Fuclidean norm used
in the LVQ is not sufficient for the above-described
task because it does not take into account the pres-
ence of outliers. Conseguently, additional tests must
be implemented in order to test the similarity between
the weight vector provided by the first layer LVQ’s and
the winner vector determined by the second layer LVQ.
The following learning algorithm for the second layer
IVQ is proposed:

1. Initialize randomly all the weight vectors W; =
(wity..,wg)T 1=1,...,p" where p < p’ < Np.

2. For each weight vector provided by the first layer
LVQ’s V(E) = (vi(k), ..., v, ()}

a. PFind the closest weight vector of the second
layer LVQ, i.e., the final winner vector W (k) by
using:

IV(9) ~ W, (Bl = mindiV(E) ~ Wil (5)

b. If there is an cutput node of the second layer
ILVQ which has not been activated, i.e., there ex-
ists a free class:

(i) Test the similarity between W, (k) and V(k)

(ii) If W,(k) and V(k) are proved similar, then
merge them. The final winner is updated as LVQ
suggests:

Wk +1) = Wy(k) + a(f)[V(k) — Wy(k)] (6)

Modify the sample mean vector and the sample
dispersion matrix. Let ng(k),m(%),S,(k) de-
note the number of patterns, the sample mean
vector and the sample dispersion matrix asso-
ciated with the class of W, respectively. Let
also ny, my, Sy be the corresponding quantities
associated with the class of V{(k). The above-
mentioned modifications are given by:

gk - 1ymy(k —1) -+ nymy
my(k) - Tlg(k _ 1) ‘+nV (7)
gk =1)8,(k — 1)+ nySy

If V (k) were previously merged with another class,
say C,, m,(k),S.(k) would also be modified by
replacing addition with subtraction in both the
numerator and the denominator of (7),(8).

(iif) Otherwise, assign V{k) to a free class, say
C;. Update Wy(k) by using (6). Set the sam-
ple mean vector Sy(%) and the sample dispersion
matrix my(k) of the free class as follows:

my{k) = my S;(k) =Sy 9)

c. If there is no free class, merge unconditionally
V(%) and W (k). Update the winner vector and
modify the sample mean vector and the sample
dispersion matrix associated with the class C; by

using {6)—(8).

3. Repeat step 2 for £ = 1,2,... until convergence
is attained.

The recall procedure of the second layer LVQ is
used for the classification of input patterns which have
either been taken from the fraining set or not. It is
used to determine the class C, represented by W, to
which the input pattern X(k) is most closely associated
with.

X(k) e G, if || X(k) - W, = Iﬁ?{llx(k) — Wil|}
(10)
The homogeneity of the winner vectors evaluated
by the LVQ in the second layer and the input weight
vectors provided by the LVQ’s of the first layer can
be tested (step 2.b.(i)) by employing statistical tests
on the mean vectors as well as on the dispersion matri-
ces. Let pg(k}, £,(k) denote the statistical mean vector
and the statistical dispersion matrix associated with
the class of W, respectively. Let also pv,Zy be the
corresponding quantities associated with the class of
V(%). The homogeneity of the dispersion matrices I,
and Ly is tested by using the statistic [8] :

T; = ng In|S; S|+ ny In|Sy*S| (11)



where
S =

) S 12
ng+nv(n9 g+ nySy) (12)
and |.| denotes the determinant of a matrix. The statis-
tic Ty is distributed as x%,41,. The following two cases

are considered in order to test the homogeneity of the
mean vectors:

1. Inhomogeneous dispersion matrices: A test statis-
tic for the hypothesis that p,, v are homogeneous is
given by [8]:

r 1 1 -1
T = (my—my)’ (=8, +-—S8y )7 (my,—my) < k
T, ny
(13)
The threshold %, in {13) can be approximately evalu-
ated by the procedure described in (8].

9. Homogeneous dispersion matrices: A test statis-
tic for the hypothesis that p,, pv are homogeneous is
the following [7]:

Ty = Iquq + st BT (14)
where

8, = ngSg + nySv
B = Z n,-(m.- — m) {m; - m)T (15)
i=g,V
ngMmMy + nymy
ng + ny

The statistic T3 is approximately distributed according
to the Wilks distribution A{g,n, +nv — 2,1).

In many practical cases the above-described rigor-
ous procedure is computationally demanding since it
requires matrix inversion (although matrix inversion
lemma [9] can be invoked) and the calculation of the
determinant of a matrix. In addition, the number of
matrices to be handled may be extraordinarily large as
is the case in color image quantization to be discussed
in the section 3. These problems can be alleviated by
testing if there is any intersection between the hyperel-
lipsoids associated with the winner vector of the second
layer LVQ and the weight vectors provided by the first
layer EVQ’s. A simple proximity test of the form:

|’LU,'9 _ ’U‘(k)l S 1 (16)
Syee + SV.-.-

where S, Sv; are the i-th diagonal elements of the
sample dispersion matrices of the corresponding classes
can be used in step 2.b.(i). Inequality (16) implies that
the hyperellipsoids are approximated by hyperparal-
lelipipedes and simply tests if there is overlap along
the i-th dimension. If such an overlap exists along any
dimension, it is inferred that V{k) and W, are similar.
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3. EXPERIMENTAL RESULTS

The two-layer IVQ architecture has been applied
successfully to color image quantization both in serial
and parallel implementations. Figure 2 shows an RGB
color image of dimensions 256 x 256 with 24 bits per
pixel. Color image quantization aims at encoding each
color pixel with one byte instead of three, thus reducing
the number of RGB triplets to 256. The major draw-
back of the typical LVQ algorithm is the excessively
large duration of the training phase due to the num-
ber of input pixels, i.e., color triplets to be considered.
Therefore, parallel LVQ implementation is considered
for speed-up. A straightforward parallelization (e.g.
a parallel computation of the Euclidean distances) re-
sults in an implementation which has heavy communi-
cation load. I communication operations are slow, the
implementation is very slow as well. On the contrary,
if training parallelism is applied by splitting pixels into
groups and the above-described novel LVQ architec-
ture is used, a faster training procedure is attained. A
two-layer LVQ having 16 networks in the first layer has
been used. Each LVQ network of the first layer has 3
input nodes and classifies 1000 randomly selected pixels
into 256 classes. The second layer LVQ} receives 4096
weight vectors determined after four iterations of the
16 first layer networks. Six iterations have been shown
adequate for the training of the second layer LVQ. The
result of quantization is shown in Figure 3. The perfor-
mance of the proposed algorithm has been compared
to the one of the following algorithms:

(1) standard LVQ (single-layer) (2,3} having 3 input
nodes and producing 256 output classes

(2) a modified LBG vector quantization algorithm
which produces a codebook of 256 color vectors in 8
iterations [4]

(3) nonuniform sampling of each color histogram by
first equalizing each color histogram separately, uni-
formly sampling each equalized histogram in a num-
ber of predetermined samples and inverse transform-
ing. Seven samples have been chosen for red channel,
six for green channel and six for blue ene. In total, 252
RGB triplets have been used.

In the comparative study outlined above, we have
used as figures of merit the mean-squared-error (MSE)
and the signal-to-noise ratio {(SNR) measured in dB,
given by:

M M .
S5 1% g) - KGN
i=1j=1
MSE
SNR = 10lo —
dB BT S X G P

where X(""a]) = (XR(iv .7)7 XG(ia j))XE(ia .7) )T Iepre-
sents the (4, 7) pixel in the original color image, X(1, )
is a {3x1) vector which represents the (Z, 7} pixel in the
quantized image and M is the number of rows/ columns.

MSE

(17)
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The results of the comparison are summarized in
Table 1.

Table 1: FIGURES OF MERIT FOR COLOR IMAGE
QUANTIZATION

Method MSE | SNR
Two-layer LVQ 156 | -25.6 +/
Single-Layer LVQ) 207 §-24.3
Non-uniform sampling of

each color histogram 297 | -22.8
LBG 37T | -11.7

It is seen that the proposed two-layer LVQ) is supe-
ror than any other method used.

A two-layer IVQ) which incorporates the proximity
test (16) has also been implemented using 16 trans-
puters T800 working at 20 MHz under HELIOS oper-
ating system in farm topology. A speed-up of 3 has
heen observed between the parallel two-layer LVQ} and
a single-layer LVQ running in one transputer using the
same number of pixels both in the learning and recall
phase. A much larger speed-up would have been ob-
tained, if other languages (e.g. OCCAM) supporting
much faster communication had been used.
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