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ABSTRACT

The texture of a geophysical image is described in terms either of seismic
horizon features f{e.g length, mean reflection strength, geometrical
appearance) or in terms of Hilbert transform features (magnitude, phase, in-
stantaneous frequency) or in terms of features related to the generalized
runs. Geophysical image segmentation rules are derived from examples by using
minimum entropy rule learning techniques. A method based on Voronoi tessella-
tion and mathematical morphology is presented for using geomeiric proximity te

reference points in region growing.

1. INTRODUCTION

Reflection seismology [1] is a widely
used method to construct an accurate profile
of the subsurface geology. After processing
seismic sections ({images)}, the next step is to
interpret them. One of the steps of the in-
terpretation 1is seismic stratigraphy [1]. The
aim of stratigraphic interpretation is to dis-
criminate grvoups of reflections whose
properties such as reflection pattern,
amplitude, continuity, frequency differ from
the properties of adjacent groups of reflec-
tions.

This paper discusses methods for the seg-
mentation of geophysical images on the basis
of stratigraphic information. Stratigraphic
information is directly related to the texture
information of the geophysical image. The tex-
ture of a geophysical image will be described
in terms of features available imn all pixels
(reflection strength, Hilbert transform
features) or in terms of features that can be
evaluated on horizons {e.g horizon-length,
mean reflection strength etc.} or in terms of
features that can be calculated on runs (e.g
run-Tength). Seismic image segmentation
requires the use of a logical rule which is
based on the feature vector and is applied to
the entire image to be segmented. It is very
desirable to construct a system that can infer
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the rule from exampies given by the inter-
preter. Image regions which are representative
of the different types of seismic textures are
chosen by the interpreter. The appropriate
seismic texture discrimination rule is created
by using rule learning techniques based on the
minimal entropy principle. If the features
can be calculated on every image pixel, the
derived rule can be used direcily for the seg-
mentation of the entire seismic image.
However, if horizon/run features are used,
only the image pixels corresponding to seismic
horizons/runs can be segmented. A1l other
pixels can be assigned to seismic image
regions by using the geeometric proximity to
the already segmented seismic horizons or
runs.

2.CALCULATION OF SEISMIC TEXTURE FEATURES

Hilbert transform analysis effects a
natural separation of amplitude and phase in-
formation. It has already found seveval ap-
plications in seismic stratigraphy [2]. The
Hilbert transform is the basis of the mathe-
matical procedure that creates the complex
trace from a real one. Hilbert transform rela-
tions are relationships between the real and
imaginary parts of a complex sequence [3]. The
complex trace s{n) is defined as
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s(n)=sy{n} + J s;(n) n

where s,.(n} and sj{n) are real sequences. The
real trace s.(n) is the already availabe seis-
mic trace. ?he imaginary trace s;(n) is the
Hilbert transform of the real sefsmic trace.
Additional texture features can be evaluated
(e.g instantaneous amplitude, phase,
frequency) [3,8].

Automatic horizon following has been ex-
tensively treated in the Titerature [4,5]. A
seismic horizon is described as a list [5].
Global information about a horizon f{e.g
average reflection, horizon Tength, global
stope} is stored in the head of the list.
Every pixel participating to a horizon is
described as a node of the list. Information
about Tlocal horizon features {e.g Jlocal
reflection intensity, Tlocal orientation etc)
are stored at each node of the horizon. The
computation of most horizon features is
straightforward. Local horizen slope is calcu-
lated by finding a Tinear piecewise approxima-
tion of the horizon.

A seismic image can easily binarized by
using an intensity threshold. A binary run is
a maximal collinear connected set of pixels
having value 1 [6]. It is important to follow
non-horizontal runs in seismic sections, be-
cause they have stratigraphic significance. A
generalized run definition alleviates this
difficulty [7]. An effective ryun following
algorithm is presented in [8]. A run can be
described as a list in a similar manner with
the horizon description. Each run can be
characterized by its Tength.

3. LEARNING TECHNIQUES IN THE DERIVATION OF
TEXTURE DISCRIMINATION RULES. REGION GROWING.

Let us suppose that m features X1,
Xps.s,Xy are used in the description of seis-
mic tex@ure and we want to discriminate K dif-
ferent texture ciasses, namely Ciseeesli. A
pixel characterized by a feature Vector X is
assigned to class Cyh» if a decision rule of
the following form is satisfied:

if Lo(Py,Pas..,Py) then xe €, (2)

where L, is a propositional logic formula and
P;y i=1,...,m are predicates of the form
Pit X5 £ Ty, 0pt (3)

In (3) Xi; Ty gpt» i=1,...,m are the features
and their corﬁegponding optimal thresholds.
The choice of optimal thresholds in (3) and
the optimal rule in {2) can be done automati-
cally by a simitar Tlearning procedure
described in [9]. First of all the case of the
discrimination of two different classes will

be treated. A modification of this scheme
capable of implementing multiclass rule learn-
ing will be described afterwards. Simultaneous
optimization for the thresholds and the rule
structure is very difficult. Therefore, the
optimization s splitted in two suboptimal
steps: (a) minimum entropy selection of
thresholds Ti 4 i=1,...,m (b} minimum
entropy selectioh B$ rule L.

Let 0,, 0, denote the sets of the ex-
amples and the counterexamples in a two-class
discrimination problem. Both sets are con-
sisted of training feature vectors of the
form (X1:%z,...%q) Let us suppose that N, No
are the number of elements of 0y and of 0
respectively.Let us denote by Hi(X1:Xp, . .0 X
the histogram of examples and by
Ho{xy,x y--+2Xp) the histogram of coun:
terexamp?es. We shall also denote by P3
k=1,2 the probability of success of a predi-
cate of the form (3) over the example and the
counterexampie sets respectively. These prob-
abilities are given by

Pi,Tk = Probf X34 ¢ Ti I Qk 1=

=(I/M) I HT(xg) i=l,...m k=1,2
X475

i
where

H (% )=D Toes © H(E7sevsXisnensE)
k (%5) k{51 i )

In (5) theJmuTtip1e summation is carried out
over all m-tuples (E,, cosXiseans ) € 0 and
for the correspon&ing £y d=1,...,m ,j¥i.
B '(x;) is the projection ‘of He(xy,..,%,) on
the X; axis. The probabilities o6f the com-
p]emen&ary events are:

_ K e
Pip¥ =1 - Py 1% kel,2 (6)

The polynomial counterpart of the entropy
function to be minimizedzhas the form [9]:
U(Ti) = .2 (Pi,T + Pi,F -1)2 (7)

He have m entropy functions (7), one for each
threshold Ti’ i=I,...,m. Therefore optimiza-
tion can be done indepently for each
threshold.

The optimal rule will have the following
canonical form:

AL |
L= v ap Ry" (8)
where the Boolean constant ay; are either 0 or
1 depending upon whether tﬁe corresponding
product term R{™ is to be exciuded from or to
be included in“the rule. The product terms Ry™
are defined as

RIm =P1mm v Pizz Pill {9)



where

pid ;- s Tf Tjﬁl (10)
not Pj if 1j=0

m indicates the npumber of predicates, and i
ig.1 ---ig 17 is the binary re- presentation
0? %he decima% number I:

(I)1g = Uip ipeq ---12 i1)2 (11)

We shall drop the superscript m in the product
terms for simplicity. The predicates in (10)
are of the form (3}). The probabilities of
success of each product term Ry are defined as
follows:

PTk(RI)= Prob[success of Rp O%Gr ]

10, ... 2™
where

k_
Pr=(1/M) p§2é'p§mﬂk(x1""’xm)
and k=1,2 m (12)

In {12) the multiple sumwmation is carried out
over (Xy,...,Xp)€l, which belong to.fhe soau-
tion of the set of predicates P''y, P15,
pIM . It can be proven that the optimal rule,
in the minimum entropy sense, consists of the
product terms that satisfy [9] :

if PrL(Ry) > Pr2(Ry) then aj = 1 (13)

This relation is interpreted as follows: the
optimal rule consists of those product terms
for which their success over examples is
greater than their success over coun-
terexamples.

The multiclass classification corresponds
to a iterative procedure described by a binary
decision tree. The rule which discriminates a
class at a certain ltevel is calculated as
follows: For each unclassified example set we
calculate the rule that discriminates this ex-
ample set from the rest of the unclassified
example sets. The rule that possesses the min-
imal probability of misclassification is
chosen as the discrimination rule for this
level. This procedure is repeated until a
decision rule is obtained for each example set
[8].

If the features can be calculated at each
image pixel ,the Tearning procedure of this
section infers the reguired rule  which
defines the segmentation for the entire image.
If horizon features are used in the rule, the
pixels belonging to horizons can be segmented
initially. In this case region growing tech-
niques must be applied, if segmentation of the
entire image is required. A method for solving
the probiem under consideration has been
proposed in [5,8]. This method is based on a
modification of the Voronoi tessellation [10]
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which is implemented by using mathematical
morphology techniques [11,12].

4. EXPERIMENTAL RESULTS

In the following, the segmentation of the
seismic image shown in Figure 1 will be
described. The horizons, which have been foi-
lowed by the technique mentioned in section 2
are shown in Figure 2.  Four representative
seismic image regions having different seismic
texture are chosen by an interpreter and are
shown as overlaid rectangles on the original
seismic image of Figure 1. These image regions
are denoted by Ry,Rp,R3,Ry. The corresponding
feature classes dare denoted by €, k=1,...,4.
The following features have been uUsed for tex-
ture description: mean reflection strength,
horizon local slope and horizon length. Thus
the feature vector x is described as a triplet
{X1:%p,%3), where x; denotes mean reflection
strength, x, denotes partial slope and x3
denotes horiZon length. The seismic texture
discrimination rule by using the minimum
entropy rule learning technique described in
section 3. is:
if (x; ¢ 137) x € Cg;
else{

if (X2 & -12°) x € Cq_;

else{

if ( xp € 142 or x3 & 70) x € Cp;
else x € Cy;

{14)

where x; takes values in the interval
[0,255], "x, takes values in the interval [-
90°,90°], x4 takes values in the interval
[0,255]. However only the image pixels cor-
responding to seismic horizons can be seg-
mented into the four classes Cp, k=1,...,4 by
using (14). Al1l other pixels can be assigned
to seismic image regions by using the
geometric proximity to the already segmenied
seismic horizon pixels. This can be performed
by employing the Voronoi tessellation scheme
mentioned in section 3. The image plane is
segmented by using the SQUARE structuring
element [12]. The segmented imageis shown in
Figure 3. The segmented regions, which cor-
respond to the classes Cy, k=1,...,4 are
shown by increasing brightness.
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Figure 2: Detected horizons

Figure 1: Original seismic image. The four
regions different texture that are presented
to the learning procedure are shown as over-
Taid rectangles

Figure 3: Segmentation of the original seismic
image. Pixels that are assigned to class 1 are
shown as black pixels. Those that are assigned
to class 2 are shown as dark grey pixels. The
ones that are assigned to class 3 are shown as
light grey pixels. Finally the ones that are
assigned to class 4 are shown as white pixels.



