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ABSTRACT

Digital implementations of sorting networks that rely

on a Digital Signal Processor core are not as e�cient as

their analog counterparts. This paper deals with the Lp

comparators for which simple analog implementations

exist. From a statistical point of view, the Lp compara-

tors are based on the nonlinear means. Their probabil-

ity density function and the �rst and second-order mo-

ments are derived for independent uniformly distributed

inputs. Lp comparators provide estimates of the min-

imum and maximum of their inputs. Therefore, they

introduce errors. A proper approach to compensate for

the estimation errors is proposed.

1 INTRODUCTION

Sorting operations are estimated to account for over 25%

of processing time for all computations [1]. Sorting is the

basic operation employed in order statistics �lters that

constitute e�ective techniques for image/signal process-

ing due to their statistical and robustness properties.

Besides signal processing, other numerous applications

of sorting can be found, e.g., in database management,

communication networks, multiaccess memory, multi-

processors, shared disks, etc. Sorting algorithms have

been extensively explored in the past few decades. Sort-

ing networks are special cases of sorting algorithms. A

sorting network has N inputs x1; : : : ; xN and N out-

puts x(1); : : : ; x(N), where x(i) denotes the i-th order

statistic of the set fx1; : : : ; xNg. That is, x(1) denotes

the smallest element of the set, while x(N) denotes the

largest element. Two of the most commonly used algo-

rithms is the odd-even transposition network [6] and the

Batcher's bitonic sorter [2]. The basic functional unit of

a sorting network is the comparator, which receives two

numbers at its inputs and presents their maximum and

minimum at its outputs. Recently, a sorting network is

shown to be a wave digital �lter realization of an N -port

memoryless nonlinear classical network [4].

The order statistics �lters employ usually a Digital

Signal Processor core. However, sorting is a compu-

tationally expensive operation, and a large area and

power reduction can be obtained with simpler analog

implementations [3]. This paper deals with the theo-

retical properties of the Lp comparator. Sorting net-

works based on Lp comparators were �rst proposed in

[5]. However, Lp comparators are \noisy" comparators.

Therefore, we have to compensate for the errors that are

introduced by the Lp comparators, before we replace the

conventional comparators in a sorting network with the

proposed Lp comparators. To devise such an error com-

pensation algorithm, �rst the statistical properties of

the Lp comparators are explored and compared against

those of the min-max comparators. Then, we propose a

simple error compensation algorithm and we derive the-

oretically the gain that is obtained, when Lp compara-

tors employing error compensation are used. Accord-

ingly, the present paper extends the previously reported

work [5].

2 Lp COMPARATORS

In this section, the Lp comparator is de�ned and its

statistical properties are derived for independent uni-

formly distributed input samples. The Lp comparator

employs nonlinear Lp and L�p means with two inputs

to estimate the minimum and maximum of two input

samples, respectively [6], i.e.,
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where p is a positive rational number di�erent than 1,

i.e., p 2 Q+ � f0; 1g. In contrast to classical max/min

comparators, whose output is one of input samples, an

Lp comparator provides estimates of the minimum and

the maximum sample. If xi, i = 1; 2, are independent

random variables (RVs) uniformly distributed in the in-

terval [0; L], the probability density function (pdf) of



the random variable z = Lp(x1; x2) is given by:

f(z) =

8>>>>><
>>>>>:

22=p

L2 p
B(1=p; 1=p) z if 0 � z < 2�1=p L

22=p

L2 p
B(1=p; 1=p) z

�
2 I L

p

2zp
(1=p; 1=p)� 1

�
if 2�1=p L � z < L

0 otherwise

(3)

where B(�) denotes the Beta function and Ix(a; b) is the

incomplete Beta function de�ned as [8]:
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1
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Z x

0

ta�1 (1� t)b�1 dt: (4)

The derivation of (3) is based on the determination of

the pdf of functions of one and two RVs [7]. For p = 2,

we obtain:
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The pdf of RV z is plotted for p = 2; 5; 8 in Figure 1. For
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Figure 1: Probability density function of the RV z =

Lp(x1; x2) for p = 3; 5; 8, when x1 and x2 are indepen-

dent RVs uniformly distributed in the interval [0; L].

completeness, the pdf of the RV x(2) for uniform parent

distribution in the interval [0; L] and N = 2 is included:

f(2)(x) =
2

L

x

L
; 0 � x � L: (6)

It can be shown that the expected value and the mean

square value of the RV z is given by:
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respectively. For p = 2, (7) and (8) yield:
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The following approximate expressions for the �rst and

second moment of RV z hold:
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The expected value and the mean square value of the

RV z for several values of the coe�cient p are plotted

in Figure 2(a) and (b), respectively. The approximate
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Figure 2: First and second moment of the RV z =

Lp(x1; x2) for several values of the coe�cient p. (a)

Expected value; (b) Mean square value.

values obtained by using (11) and (12) are overlaid for

comparison purposes. It is seen that for p > 8 the values

obtained by the approximate expressions are practically

the same to those obtained by numerical integration of

(7) and (8). The expressions in (7) and (8) should be

compared to those of the order statistics for N = 2 and

uniform parent distribution that are given by [9]:
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3
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L2

2
: (13)

It is obvious that the �rst and second moments of the

RV z tend to those of the RV x(2) for large p.

Similarly, if xi, i = 1; 2, are independent RVs uni-

formly distributed in the interval [�; L], the pdf of the

random variable w = L�p(x1; x2) is given by:
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For p = 2, (14) is simpli�ed to:
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The pdf of the RV x(1) for uniform parent distribution

in the interval [0; L] for N = 2 is given by:

f(1)(x) =
2

L

�
1� x

L

�
; 0 � x � L: (16)

For xi, i = 1; 2, independent RVs uniformly distributed

in the interval [0:1; 1], the pdf of the L�p comparator

output is found by employing numerical integration and

is plotted in Figure 3 for p = 2; 4; 6. The limit of the
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Figure 3: Probability density function of the RV w =

L�p(x1; x2) obtained by numerical integration for p =

2; 4; 6, when x1 and x2 are independent RVs uniformly

distributed in the interval [0:1; 1].

expected value and the mean square value of the RV w

for �! 0 is given by:
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The expected value and the mean square value of the

RV w for several values of the coe�cient p are plotted

in Figure 4(a) and (b), respectively. It can easily be

veri�ed that for p large, the �rst and the second moment

of the RV w approximate those of the RV x(1), i.e.:

Efx(1)g = L

3
; Efx2(1)g =
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: (21)
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Figure 4: Limit of �rst and second moment of the RV

w = L�p(x1; x2) for several values of the coe�cient p

when �! 0. (a) Expected value; (b) Mean square value.

3 ERROR COMPENSATION

Lp comparators introduce errors. Let emax(x1; x2) =

x(2) � x̂(2) denote the error introduced by the Lp com-

parator in the estimation of the maximum of two input

samples. Then:

0 � emax(x1; x2) � 1

2
jx2 � x1j: (22)

Similarly, let emin(x1; x2) = x(1)� x̂(1) denote the corre-

sponding error in the estimation of the minimum of two

input samples. It can easily be shown that:
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2
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For xi, i = 1; 2, independent RVs uniformly distributed

in the interval [0; L] it can be shown that the mean

squared error (MSE) introduced by the Lp comparator

is given by:
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For p = 2, we obtain:
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The MSE of the Lp comparator is plotted for several

values of the coe�cient p in Figure 5. It is seen that

the larger the coe�cient p is, the smaller the MSE in-

troduced by the Lp comparator becomes. Accordingly,

for large values of the coe�cient p, the Lp comparator

converges to the max operator, as expected.

If xi, i = 1; 2, are independent RVs uniformly dis-

tributed in the interval [�; L], it can be shown that for

�! 0, the limit of the MSE of the L�p comparator is:

lim
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Figure 5: MSE of the Lp comparator and the modi�ed

Lp comparator in estimating the maximum of two inde-

pendent input samples that are uniformly distributed in

the interval [0; L].

For p = 2, (26) is simpli�ed to:
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The MSE of the L�p comparator is plotted for several

values of the coe�cient p in Figure 6 as well. It is seen

that the larger the coe�cient p is, the smaller the MSE

introduced by the L�p comparator becomes. Accord-

ingly, for large values of the coe�cient p, the L�p com-

parator converges to the min operator, as expected.
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Figure 6: Limit of the MSE of the L�p comparator and

the modi�ed L�p comparator in estimating the mini-

mum of two independent input samples that are uni-

formly distributed in the interval [�; L], for �! 0.

Next, we compensate for the MSE introduced by the

Lp comparators for small p. We argue that the esti-

mation error increases almost linearly with the abso-

lute value of the di�erence between x1; x2 (i.e., their

distance). Accordingly, we propose to modify the Lp

comparator outputs as follows:

~x(1) = L�p(x1; x2)� d jsj; d > 0 (28)

~x(2) = Lp(x1; x2) + c jsj; c > 0 (29)

where s = x2 � x1 and c; d are constants. The con-

stants c and d can be chosen so that the Ef~e2maxg and

lim�!0 Ef~e2ming is minimized, respectively. It can be

shown that the optimal constants c; d are given by:

c =
3

2
+ 3 � 2�1=p

Z 1

0

(s� 1) (1 + sp)1=p ds (30)

d = �1

2
� 3 � 21=p

Z 1

0

s (s� 1)

(1 + sp)1=p
ds; (31)

respectively. The optimal constants c; d are plotted for

several values of the coe�cient p in Figure 7. The MSE
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Figure 7: Optimal constants c; d that minimize the MSE

between the modi�ed Lp comparator output and the

true maximum and minimum of two independent uni-

formly distributed samples, for several values of the co-

e�cient p.

between the modi�ed Lp comparator output (29) and

the true maximum sample is given by:

Ef~e2maxg = Efe2maxg �
c2 L2

6
(32)

It is overlaid in Figure 5 for comparison purposes. Sim-

ilarly, the MSE between the modi�ed L�p comparator

output (28) and the true minimum sample, Ef~e2ming =

Efe2ming � d2 L2

6 , is shown overlaid in Figure 6.
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