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I Introduction

Neural networks (NN) is a rapidly expanding research field which attracted the
atlention of scientists and engineers in the last decade [I]. A large variety of
artalicinl nenral networks has bheen developed based on a mallitude of learning
tecliniques and having ditlferent topologies [1,2). One of the most prominent
nenral networks in the lilerature is the Learning Vector Quantizer (LVQ) [3].
It is an assoctalive nearest netghbor classiflier which classifies arbitrary patterns
tirto N-inany classes using an error-correciion learning procedure related to the
compelitrve learnimg. Among ofhers, il has been appled for tinage segmentation
[4.5] ele. Tor a complete lisl of the numerous applications LVQ) has found, the
interesied reader may consull [1 3]

As its name sugpesis, V() 18 essenlially a veclor quantization method, A
vector gquantizer (V) maps data [rom a p-dimensienal space to a finite set of
points callad a codebook, where each point 15 called a codevector. One common
[eature of vector quantizalion methads is that they rely on the assurnption that
Lhe size of codebook (i.e., the number of onput neurons) &, is known in advance
or 15 preset to a desired value, nsually a power of 2. To the author’s knowledge,
no atlempt has beeu made Lo freat thoronghly the problem of optimal &, Al-
though several VQQ design tecliniques employ sphitting criteria, the availability of
gplitting criteria 18 not sullicient from its own. Since a quantization im terms of
N + 1 ouiput neurons is always expected to yield a lower Mean-Squared Error
(MSE) than a quantization in terms of N output nenrons [6], the issue of decid-
ing what constitutes a statistically significant improvement in MSE should also
be addressed. Another common fealure of the bulk of nearest neighbor cluster-
ing procedures (litke LVQ) is the uncondilional inclusion of each training vector
provided 1t the inpid of VQQ in the cluster of the nearest-netghbor codevector
(1.e., the ncarest-neighbor oulput newron), whether the incoming iraining vec-
tar is stabiatically symilar or not to the remaining training vectors that were
previongly included in the same clusler. Therefore, clficient, means for rejecting
oulliers in the formation ol winimum distortion partition of a V(} should be
developed.

Mottvated by the above deseribed open gquestions, a sphit-merge 1LVQ algo-
rithim s proposed thal iocorporates sltalistical hypolliesis testing on mean vectors
as well as additional Lesls Wiat are wsed Lo deternine il cluster splitting/merging
is statistically signilicant. "Testing statistical hypotheses on mean vectors [7,8]



may scrve as an outlier delection mechanism. Cluster splitting 1s justified by ap-
plying tesis on the sum of squared-errors. These lests determine if the reduction
tu the above-mentioned criterion is statistically significant [6,8]. Cluster merping
15 justifind on the gronnds of statistical tests that decide 1f two mean vectors are
statistically equal {1,7 8]. The later tests have been discussed thoroughly in [4]
and will nol deseribed in this paper. Experimental results verify the superiority
of the proposed split-merge LVQ algorithm with reapect to the number of acti-
vated oulpul nenrons, the probamhity of classification of each training vector as
well as the MSIS afler the learning phase has been led 1o convergence.

2 Split-Merge Learning Vector Quantizer

Learning Vector (Quantizer relies on the Fuchdean distance in order to determine
the best malching oulput nevron (“winner”). It ts well known that in order for
the Fuclidean distance to be a most effective measure, input patterns must he
linearly transformed 1o another ones that are uncorrelaied and of equal variances
[8]. Such a lincar transformation yiclds the so-called Mahalanobis distance {7,8],
1.e.

1 x(k) — wo(k) [Im= [{x(k) — w.(k))" S7" (k) (x(k) — we(k)) - (1)

b, 15 readily scen Lthak by simply replacing the Knclidean distance with the Maha-
lanohis onein the LV} encoding algorithin, the inversion of the sample dispersion
matrix having dimensions px p wonld be required at each inputl pattern presenta-
tton. Such a modification would resubt in additional @(p?) arithmetic operations
(c.g. muliiplications fadditions) under the best ctrcumstances, 1.e., when matrix-
inversion demrea [9] could be invoked. 1 will be seen kater on thal, by employing
Lests on Lhe mean veelors as an onblier rejection mechanism a quadratic form
sitmlar 1o (1) s needed Lo be evaluated and to be compared to a threshold, But
tn Lhe taler case, the mimber of fimes such an addiional computation has to be
performed is imiled only to: (1) the pattern presentations during the first session
(1.c., when Lhe whole Lraining sel 1s presented Lo the input of LVQ for first time),
(i1} the patierns that move from one cluster 1o another, and, (iit) the patterns of
a clugter where a modilication (i.e., insertion/removal of a pattern) has occurred
during the session that modification took place. By experiments, tt has been
found that the number of times the above-mentioned test should be applied is
mich smaller that the total number of iterations needed until convergence.

2.1  Criteria for Detecting Outlicrs

Let us assume that an arbitrary number of oniput neurons exists in the output of
an LVQ). Let ¥{0) denote the number of initial neurons. Since all the statistical
lesls that will be employed next rely on lirsl and second-order statistics, each
outpul ncuron evaluales the sample mean veclors and the sample dispersion
matrix associabed with the cluster it represents. We shall also assume that a



connter is associaled with each neuron which counis the number of patterns
thai. belong o the cluster represented by that neuron. At the beginning, the
sample mean m;, the sample dispersion mairix 8; as well as the number of

valteris n; of each newron’s cluster are appropriately inthiahzed.
] f] J
Lol vs denote by 7 the index that counts the training sessions. For cach

patiern presentation x(k) & = 1,..., M during the i-th session, the winner
nenzon is found:

N R

(k) ~ wiCk) [l=min (| x(k) = wiP (k) 1} - (2)

NE(k) is the number of onlput neurons when the k-th training vector 1s pre-
sented in the input of EVQ) during the i-1h training session. Then, the number of
patterns that are represented by the winner as well as the sample mean vector
of the cluster associaled wilth the winner are updated as il input pattern x(k)

were merged into that cluster, as follows:
k) = nl (k- 1)+t d (k) = x(k) — ml Mk - 1)
d{V(ky . (3)

m (k) =mi(k— 1)+ ¢ ](Jz]

Such an updating is required during the first training scssion (¢ = 1} as well
as Tor ¢ > 2 when (k) £ :~D(k), where cl¥)(k) denotes the index of the
winner neuron at the presentation of the &-th pattern during i-th iteration. This
is case (i) outlined above. Case (iii) refers Lo the remaining patierns of a cluster
which has been modified dite to an insertion/removal of another pattern. Since
dD(k) = =1(k), for a moment, we exclude pattern x(k) rom the cluster of

patierns that ts represented by the winner, Qur purpose is to test if its inclusion
to that cluster is still valid. Therefore, we have:

nl(k) = nl(k - 1) n{(k) = n{)(k) — 1
mi (k) = mi (& — 1) di(k) = x(k) — mP (k)
m(k — 1) = m{(k) - Ak . (4)

n:’(&:)

A similar provision has to be made for the sample dispersion matrix of that
cluater. Clearly SEI}(I::) = SE:']{JL' ~ 1}, and

)
SOk — ) = %'—}% {Sﬁ”(’“} - ”r;:yl“_)*lﬂi}{ff)llif}(k):"} - (5)

Obviously, tlhe jutiail condittons for updaling the equations (3)-(5) are:
ni”(ﬂ} = HEI-_”(M] m; ]([l) = mb 1}(M‘] SE”({]) = SE-I}(M) (6)

In the sequel, we define a binary hypothesis testing problem. Under the null
hypolthesis, ffg, we assurue that the mean vector of the cluster represented by



the winner neuron, p1, equals m (k} Under the alternative hypothesis, ffy, g
equals m$?(k — 1), ¥ € {¢,7}. The covariance matrix X is assumed unknown

under both hypothesea. Recall that nll[yi}(i: — 1) is actually the sample mean of

that cluster, ¥, because mgi}(k) has been computed as il x(k) were merged to
the cluster under examination, which is what we are going to test. Let

ngf}(k)d%“(k) Y€{eTh . (7)

The null hypothesis is accepted, 1.e., we decide that merging x(ﬁ:] with the
retnaining patterns is valid, il [7}:

(e 1y _ o
(ﬂm H‘ U F‘) A7 [ng]{k ])]-— d < Iir1 ol (k= 1) pi0.05 for cascs (i), (ll)

d = mP(k — 1) — m(k) = —

p

e

where [ 005 denotes the upper 5% level of significance for the F-distribution

wilh 1 and r — p degrees of freedom.
Il {7y 1s accepted, then the winner vector s updated as LVQ suggests [3]:

WOk +1) = w (k) + a(i) [x(k) ~ wl(k)] (9)

where o(£) 18 a variable adaptation step delined aﬂ. i) = 0. J { - 1aes] [1,3).
The updating of ng ]{ﬁr 1) and m’ ](."f.' [) to nd (ﬁ:) and m {JE:) respectively
are assumed valtd, Furthermore, the sample dispersion matrix of the cluster
associaled with the wainner 1s also updated:

Gepy = POE =) [ L 40 1d® )7

SO() = "0 S0 = 1)+ 5 dDRaPRTY (10
ne (k) (k)

Morcover, in case (ii) the number of patterns, the sample mean and the sample

dispersion ralnix associated with Lhe cluster of past winner are corrected, Let

v = (k) denote Lhe past winner. Then:

o o
(”T I )‘l’[ﬂi’)(k DTS F, gy poos  for case (ili) . (8)

k) = nk — 1) — 1 d (k) = x(&) — m{ & - 1)
. . [
m' k) =m k- 1) - - —dWk
) ROMa (k)
() -
: 1) ﬁ.- . ].) J
sy = " F D gmg 1) - — WOET S (1)
| ni (k) 5:}(.::) )

For the remaining neurons, all the corresponding parameters are left intact, i.e.:
n}z}(k) = H?}(k‘ — 1) m?}(k) — an][k — 1) SE"](JE:} = SE‘J(F; — 1)
wi(k+ 1) = wi(k) (12)

where 7 = 1, N¥I(k), 1 # ¢ in cases (i), {ii)) and 7 # e, v in case (ii}. In the
following, we shall consider what happens when Hy is rejecled.



2.2 Splitting Criteria

If Hy 15 rejected, 1t 1a reasonable to examine whether the cluster represented hy
the winner neuron can be split into two subclusters. Lel us denote Lhat cluster

by (’“}(F: — 1). We shall borrow from the lield of cluster analysis [6,8] a statistic
thai relies on the sur of squared err‘-. J(g), 0 = 1,2 to test dhe validity of
the f{:-lln::nwuu._, posstbilities: {a) ¢cluster ¢l ){JL — 1) s kept wited (g = 1), and, (h)
clusler 3.(: (k — 1) 15 subdivided into two clusters (g = 2), say {.E }( : — 1} and
Ik — 1),

Let us define first the sum of squared errors in cases {a) and () outlined
above. We have:

Jolg) = {ExJEGE‘}[k—I] | x; —m; }{k 1) for g = (1)
2velcm) 2ox eciron | %5 — m{(k — [ forg =2

i .
where m' ](k — 1} and m( ](#: — 1) denote the sample mean veetors of the re-
sulted subclusters. In the Hﬁquel, we shall describe how Lhe Lentative splitting is

periormed.
. + 1 . . tl . . .
We determine the direction in which cluster ¢ J(.{: -~ 1) variation is grealest,
This amounts to finding the principal component of the sample dispersion matrix

(t.e., the eigenveclor thal corresponds to the largest eigenvalue of SEl}(fc -1} ).
.t us denote by el ]g — 1) Lhe principal (normalized) etgenveclor of S”( —1).
Having determined e ]{.l'c — 1), we examnine the splitting of cluster C: 'l }( —1} with
a hyperplane which is perpeud]culdr to the direction of ol ](i ~ 1} and passes
through the sample mean . ]{ﬁ: — 1). Therefare, all paticens in L’E_ij(k - 1) are
sorted inlo scis (,'Ei}( r— 1) and If,g”(k — |) as follows:

C(k - 1) = {x eCHk -1 Pk —1)"x <ok - 1Y m (% - n}

Ck~ 1) = {x ceChk-1): Wk - D"x >k~ 'mP k- 1}}
(14)

As mentioned earlier, splitting of any cluster to lwo subclusters will resull a
lower sum of squared errors, i.c., J.(2) < J.(1). We decide 1o consider as valid
any splitting that yields a statistically significant improvement (1.c., decrease) i
the above-mentioned criterion. o this end, a binary hypothesis testing problem
is formulated as follows [6]. Under the null hypothesis we assume that there
is exactly one cluster present. Furthermore, it is assumed thal all nb j(fc — 1)
patterns come frormm a multivariate di:::trilmtlc:m with mean g and covarnance
matrix oI, ‘I'hen, J.{(1) is drgued thal s approximmalely normal willh mean
nﬂ”(k — 1}po? and variance Qn..: ](k — I}pe’ [6]. Next, the sampling distribution
lor J.{2} is computed under the nmull hypoihesis. ‘This (]hi ribelion expresses what
kind of apparent imnprovement to be cxpecied when ihe one cluster partition iz
actually correct. IF'or the splitting provided by a hyperplane through the sample



rnran and large n; }(!'r — 1}, Ju(2) is dg&m approximalely normal with mean

a2k — i(p — 2)a? and variance Il {&' — D)(p — F)o? [6).
‘The pull hypothesis 18 rejected, therefore, splitting is accepied al the p-

percentage signilicance level, 1f

: 2(1 ~ -3
J.(2) ]_ui_ﬁ 201~ 755) (15)

Je(1) mp ns ke — )p

¥

where g = 100 [ v‘u— expl—% ] du.

If closter splitting s accepled, we prm ced o Lhe evaluation of the sample
dispersion malrices for (TE”(R: —~ 1} and L,, }(.ﬁ' — 1). Next, it ts examined if the

current traunng patlern x(&) can be merged with one of the subcluaters ﬂé”(ﬁ.‘. e

1) or }(ﬁ — 1). "The following two cases are conswdered:

[T v“][k - NPx(k) < {-M(Ir — D g }{J'r t), possible inclusion of x{%) in
‘“ (A — 1) s tesied by applying the statistic deseribed in Sect, 2.1.

2. ﬂi]lmwmﬂ possible inclusion of x(4) in clf }(E: — 1) is Lesied by applying the
slalistic described 1 Seet. 2.1,

[n cither case, il the null hypothests of Sect. 2.1 18 accepted, the number of
patterns, Lhe gsample mean and Lhe sample dispersion matrix of the subcluster
where x(k) is merged are appropriately updated. 'Fhe corresponding parameters
ol the olher claster are left intact, Moreover, the winner ncuron is replaced by
the two newly created ones. Their weighl vectors are set equal to the sample
mean veclors mE‘}(Ir.) and mgﬂ(k).

I %(k) cannot be merged with any of the subclusters created by splitting
*E”(k — 1), a third subcluster is formed having seed x{(k). In that case, the
winner nenron is replaced by three new neuwrons, i.e., the two products of cluster
splitting and a third neuron whose weight vector is set to x(k}.

Finally, we descrihe what happens when eluster splitting is not accepled, i.e.,
when (15} does not hold. In the later case, the winner neuron 18 kept united and
an additional neuron is foried corresponding to a distinet cluster having seed
x(k}.

The procedure deseribed so far is apphed for each traming pattern presen-
fatton. When the training set has been exhausted, Lthe integrity of the cluster
associaled wilh each oulpnt neuron is tested once more by applying the split-
ting crilerion described above. Having completed the later test, we compute Lhe
average distortion (e.g. MSIi) at the end of session i as follows:

= S () — Wi ) (16)

k=1

IC (DG — L) — D) /D) > e = 0.001, we proceed Lo an additional training

8e8S8101.



3 Experimental Results

‘The description of one experiment that demonstrates the superiority of the pro-
poscd spht-merge LVQ algorithm iz only included. Four distinet bivariate normal
populations have been created. Fach one has 1000 2-d patterns (i.e., points). The
statistical description of the created populations follows:

Pyas aset of 2-d patterns distributed according Lo ¢(10.0,20.0;0.61, 1.0; (1.8)
Pa is a set of 2-d paticrns distributed according to ¢{20.0,20.0;1.33, 1.0;0.5)
P 15 aset of 2-d paiterns distribiuted according to G(23.0,16.0:1.8,1.2: 0.0)
Pa 15 aset ol 2-d palierns distributed according to ¢(10.0, 10.0; 1.0, 1.0; 0.7}

where G, ft9; o1, 0y; 7) denoles a bivariate normal distribution. Parameters 14
and o;, 1 = |, 2 are the expected values and the standard deviations along each
dimension respectively, and r denoles the correlation coeflicient, ‘The “contours
of equal concentration” for probabilities 0.9 and 0.99 of the populations P, and
P4 can be found in Fig. 1.

The performance of a modilied LVQ} algorithm that implements the proposed
split-inerge criteria has been tested against that of a standard LVQ. The modified
LV network has two output nenrons initially, ‘The number of output neurons
{or stendard LVQ nearal network is set. io five. It has been found by experiments
that increasing the number of output nearons for standard LVQ NN more than
5 does not alter the results obtained. Both neural neiworks have been Lrained
by the same set. The training set is formed by seiecting randomly 0% of the
patierns that belong to each population. Three training scssions are required for
both NN to converge. At the end of the learning phase, the modified V() NN
resnlts in five oufput neurons. Each neuron is associated with a clusier where
all training patierns that come from a distinel population have been included.
In other words, although the training is unsupervised, we have obtained perfect
classification. On the contrary standard LVQ results in three activated output
neurons. In Table 1, the learning and the recall MSE are sumimarized. Informa-
tion related to the learning phase of split-merge LVQ) can be found overlaid in

Fig. 1.

Table 1. Learning and Recall Mcan-Squared Freror

Mean-Squared Errar Hpﬁijﬁmrg{: LVQ|Standard LV
.earning phasc 2.530366 h.h99298
Rocall phase 2609161 5. 749121
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Fig. 1. Conlours of equal concentration for probabilities 0.9 and 0,99 of the populations
P2 and Pi. I'he trajectories ol output nenron weight vectors are overlaid.



