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Abstract. Probabilistic Latent Semantic Indexing (PLSI) is a statistical tech-
nique for automatic document indexing. A novel method is proposed for updating
PLSI when new documents arrive. The proposed method adds incrementally the
words of any new document in the term-document matrix and derives the updat-
ing equations for the probability of terms given the class (i.e. latent) variables
and the probability of documents given the latent variables. The performance of
the proposed method is compared to that of the folding-in algorithm, which is
an inexpensive, but potentially inaccurate updating method. It is demonstrated
that the proposed updating algorithm outperforms the folding-in method with re-
spect to the mean squared error between the aforementioned probabilities as they
are estimated by the two updating methods and the original non-adaptive PLSI
algorithm.

1 Introduction

Information Retrieval (IR) is the research topic that examines how people find informa-
tion and how tools (such as search engines and catalogues) can be constructed to help
people to retrieve information. IR has attracted the attention of researchers for more
than 40 years. Nowadays, the World Wide Web is one example of information overload
and its expansion has generated needs for more efficient access to global and corporate
information repositories. Such repositories are usually text-based, but they increasingly
include multimedia content. In this paper, we focus on text-based IR.

The paper builds on the vector space model [1], where the available textual data
of the training corpus along with the query-documents are represented by numerical
vectors. Each vector element corresponds to a different term, that is, a distinct word in
the corpus [2]. It is generally agreed upon that the contextual similarity between docu-
ments exists also in their vectorial representation. Therefore, similarity can be assessed
by a vector metric. There are two drawbacks in the original vector space model tech-
niques such as word polysemy (i.e., when one word has many meanings e.g saturn) and
synonymy (i.e., two or more words have the same meaning e.g. car and automobile).
Polysemy tends to reduce precision, while synonymy tends to reduce recall.

Several vector space dimensionality reduction methods have been proposed in or-
der to solve the two aforementioned problems. For example, latent semantic indexing
(LSI) maps the documents and the terms onto the so-called latent semantic space [3].



LSI performs dimensionality reduction by using singular value decomposition (SVD).
However, although LSI yields good results, many problems arise due to the lack of a
statistical foundation. This happens because LSI assumes that words and documents
form a joint Gaussian model. However, Gaussian models can generate negative values.
Document vectors whose elements are simply the term counts cannot admit negative
values. Contrary to the LSI, a method that has a firm statistical foundation is the proba-
bilistic latent semantic indexing (PLSI) [4]. PLSI is based on a statistical model, the so
called aspect model [5, 6]. It allows to deal with polysemous and synonymous words. It
has been proved that it outperforms LSI in document and word clustering applications.

In this paper, a novel method is proposed for updating PLSI when new documents
arrive. The proposed method adds incrementally the words of any new document in the
term-document matrix and derives the updating equations for the probability of terms
given the class (i.e. latent) variables and the probability of the documents given the
latent variables. Such an updating scheme is very useful when we deal with applications
that refresh their term-document matrix very often. A typical example is a web crawler
[7]. The performance of the proposed method is compared to that of the folding-in
algorithm, which is an inexpensive, but potentially inaccurate updating method. It is
demonstrated that the proposed updating algorithm outperforms the folding-in method
with respect to the mean squared error between the aforementioned probabilities as
they are estimated by the two updating methods and the original non-adaptive PLSI
algorithm.

The outline of the paper is as follows. Section 2 describes briefly LSI, while PLSI is
presented in Section 3. The proposed updating algorithm is derived in Section 4. Exper-
imental results are demonstrated in Section 5 and conclusions are drawn in Section 6.

2 Latent Semantic Indexing

LSI has demonstrated an improved performance over the traditional vector space tech-
niques and it has been successfully employed in many IR systems [3]. It is an optimal
special case of multidimensional scaling [8] that aims at discovering something about
the meaning behind the terms and about the topics in the documents, where the topic is
an unobservable (i.e., a latent) variable. LSI models the semantics of the domain in or-
der to yield additional relevant keywords and to reveal the “hidden” concepts of a given
corpus while eliminating the high order noise. The attractive point of the method is that
it captures the higher order “latent” structure of word usage across the documents rather
than just the word surface level. This is done by modeling the association between the
terms and the documents based on how terms co-occur across documents. The key idea
of LSI is to map terms and documents to a vector space with reduced dimensionality,
the latent semantic space. Let X be the T ×N term-document co-occurrence matrix of
rank r <= min(T,N). LSI is based on an application of SVD to X:

X = U D V� (1)

where U and V are both column-orthogonal matrices, D is an r × r diagonal matrix
that contains the non-zero singular values of X, and � is the transposition operator. An
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Fig. 1. The data generation process.

approximation of X is computed by preserving only the largest K < r singular values
of D in D̃ and setting the remaining singular values to zero:

X̃ = UD̃V�. (2)

Eq. (2) indicates that the new document-term matrix X̃ is no more sparse. So we hope
to compute a meaningful association between document pairs and that terms with the
same meaning will be mapped to the same subspace.

3 Probabilistic Latent Semantic Indexing

Recently, LSI has been criticized, because its probabilistic model does not match the
observed data. Thus, a novel alternative is proposed the so called PLSI that is based on
a multinomial model. It has been reported to yield better results for document and word
clustering than the standard LSI [4]. PLSI is based on the so called aspect model [5].
In the sequel, the variables z, t, and d denote indices to topics, terms, and documents,
respectively. The aspect model is a latent variable model for co-occurrence data which
associates an unobserved class variable z = 1, 2, . . . , K with each observation. So,
for any text document d = 1, 2, . . . , N we assume that the occurrence of a term t =
1, 2, . . . , T in the document is an observed variable and the topic z is an unobserved one.
PLSI defines a generative model for term-document co-occurrences. The assumption is
that each term t in a given document d is generated from a latent topic z, i.e. a term
is conditionally independent from its original document given the latent topic it was
generated from. The data generation process can be described as follows[9]:

1. Select a document d = δ with probability P (d = δ).
2. Pick a latent topic z = k with probability P (z = k|d = δ).
3. Generate a term t = j with probability P (t = j|z = k).

Figure 1 depicts the data generation process. The generative process is described by the
joint distribution of a term t = j, a latent topic z = k, and a document d = δ:

P (d = δ, z = k, t = j) = P (d = δ)P (z = k|d = δ)P (t = j|z = k) (3)

and the joint distribution of the observed data is given by:

P (d = δ, t = j) =
K∑

k=1

P (d = δ, z = k, t = j)

= P (d = δ)
K∑

k=1

P (z = k|d = δ)P (t = j|z = k). (4)



From (4) one can notice that in contrast to document clustering models, document-
specific term distributions P (t|d) are obtained by a convex combination of the aspects
or factors P (t|z). Documents are not assigned to clusters. They are characterized by a
specific mixture of factors with weights P (z = k|d = δ). So each word in a document is
seen as a sample from a mixture model where mixture components are the multinomial
P (t = j|z = k) and the mixing proportions are P (z = k|d = δ). These mixing
weights offer more modeling power and are conceptually very different from posterior
probabilities in clustering models and (unsupervised) naive Bayes models.

To further simplify the notation we suppress δ, k, and j hereafter. In order to deter-
mine P (d), P (z|d), and P (t|z) we should maximize the log-likelihood function

L =
N∑

d=1

T∑
t=1

n(d, t) log P (d, t) (5)

where n(d, t) denotes the term frequency, i.e the number of times t occurred in d. It
is worth noting that an equivalent symmetric version of the model can be obtained by
inverting the conditional probability P (z|d) with the help of Bayes’ rule, which results
in

P (d, t) =
K∑

z=1

P (z)P (t|z)P (d|z). (6)

Eq. (6) is just a re-parameterized version of the generative models described by (3) and
(4).

The PLSI algorithm maximizes the log-likelihood of the model by using the Expec-
tation Maximization (EM) algorithm[10]. EM alternates between two steps:

1. An expectation step (E-step) where posterior probabilities are computed for the
latent variables z based on the current estimates of the parameters.

2. A maximization step (M-step), where parameters are updated for given posterior
probabilities computed in the previous E-step.

For the aspect model in the symmetric parameterization Bayes’ rule yields the E-step

P (z|d, t) =
P (z)P (t|z)P (d|z)∑K

z′=1 P (z′)P (t|z′)P (d|z′)
(7)

which is the probability that a term t in a particular document or context d is explained
by the factor corresponding to z. By straightforward calculations, one arrives at the
following M-step re-estimation equations [4]:

P (t|z) =
∑N

d=1 n(t, d)P (z|d, t)∑N
d=1

∑T
t′=1 n(t′, d)P (z|d, t′)

(8)

P (d|z) =
∑T

t=1 n(t, d)P (z|d, t)∑N
d′=1

∑T
t=1 n(t, d′)P (z|d′, t)

(9)

P (z) =
1
R

N∑
d=1

T∑
t=1

n(t, d)P (z|d, t) (10)



where

R =
N∑

d=1

T∑
t=1

n(t, d). (11)

Alternating (7) with (8)-(10) defines a convergent procedure that approaches a local
maxima of the log-likelihood.

In [4], a generalization of the EM algorithm for mixture models is proposed, the so
called tempered EM (TEM). TEM is based on an entropic regularization and is closely
related to the deterministic annealing. In short, a control parameter β (the inverse com-
putational temperature) is introduced and the E-step is modified to

Pβ(z|d, t) =
P (z)[P (d|z)P (t|z)]β∑K

z′=1 P (z′)[P (t|z′)P (d|z′)]β
. (12)

For β = 1, (12) is the standard E-step, while for β < 1 the likelihood part in Bayes’ for-
mula is discounted. It can be shown that TEM minimizes an objective function known
as the free energy [11] and hence it defines a convergent algorithm. In the context of
PLSI, the main advantage of TEM is that it avoids overfitting. In order to determine
the optimal value of β the use of some held-out data is recommended [4]. The typi-
cal number of TEM iterations performed starting from randomized initial conditions is
40-60.

The PLSI model can be used to replace the original term-document representation
by a representation in a low-dimensional “latent” space in order to perform term clus-
tering or document retrieval. The components of the document in the low-dimensional
space are P (z = k|d), k = 1, 2, . . . ,K and for each unseen document or query
the aforementioned components are computed by maximizing the log-likelihood with
P (t|z = k) fixed [12]. It is obvious that PLSI is not a well-defined generative model of
documents, since there is no direct way to assign a probability to an unseen document.
However, a better performance for PLSI than LSI was reported on several corpora in
[12]. In particular, PLSI is found to perform well even in the cases where LSI fails
completely.

4 Updating Scheme for Probabilistic Latent Semantic Indexing

One open problem for PLSI is its updating scheme. In the literature, the only available
solution is the well-known method of folding-in of a new document, where we project
the new document vector to the latent space [13]. However, this method is suitable
for document queries and not when new documents are added in the term-document
matrix and PLSI model has to be retrained. This happens because the folding-in method
calculates only the mixing proportion P (z|d) while the factors P (t|z) are kept fixed.

A novel method is proposed in this paper for updating all the PLSI model param-
eters. To distinguish between P (t|z) and P (d|z) we introduce the notation P1(t|z) =
P (t|z) and P2(d|z) = P (d|z). Let us focus on the computations that take place when
we proceed from iteration l to iteration l + 1 of the EM algorithm. The E-step for itera-



tion l + 1 is given by

P (z|d, t)l+1 =
P (z)lP1(t|z)lP2(d|z)l∑K

z′=1 P (z)lP1(t|z′)lP2(d|z′)l

. (13)

The M-step for updating P1(t|z) at iteration l + 1 is rewritten as

P ′
1(t|z)l+1 =

N∑
d=1

n(t, d)P (z|d, t)l+1 (14)

P1(t|z)l+1 =
P ′

1(t|z)l+1∑T
t′=1 P ′

1(t′|z)l+1

. (15)

By substituting (13) into (14) we obtain:

P ′
1(t|z)l+1 = P1(t|z)l

N∑
d=1

[
n(t, d) P2(d|z)l∑K

z′=1 P (z′)l P1(t|z′)l P2(d|z′)l

]
P (z)l (16)

Similarly, the M-step for updating P2(d|z) at iteration l + 1 is rewritten as

P ′
2(d|z)l+1 = P2(d|z)l

T∑
t=1

[
n(t, d) P1(t|z)l∑K

z′=1 P (z′)l P1(t|z′)l P2(d|z′)l

]
P (z)l (17)

P2(d|z)l+1 =
P ′

2(d|z)l+1∑N
d′=1 P ′

2(d′|z)l+1

. (18)

Let us assume that a new document indexed by d = N + 1 is added at the end of
the lth iteration that contains only one word that appears a times. We also assume that
the addition of the new document alters neither the number of topics nor the vocabulary
of terms. Without any loss of generality, let us assume that the single word is the first
word in the vocabulary, i.e. t = 1. Therefore, n(1, N + 1) = a and n(t,N + 1) = 0,
t = 2, . . . , T . Let P2 be the N ×T matrix with elements P2(d|z), d = 1, 2, . . . , N and
t = 1, 2, . . . , T . To initialize the recursion for the (l + 1)th iteration, we simply append
a new row to P2 with elements P2(N + 1|z)l that are numbers uniformly distributed
in the interval [0, 1] and we normalize so that each column in P2 has a unit sum. Under
the just described conditions, it can be proven that (16) takes the form

P ′′
1 (t|z)l+1 = P ′

1(t|z)l+1 + P1(t|z)l
n(t,N + 1) P2(N + 1|z)l∑K

z′=1 P (z′) P1(t|z′)l P2(N + 1|z′)l

P (z)l

(19)
where P ′

1(t|z)l+1 is simply the value predicted by (16) before the addition of the new
document. Eq. (19) is further simplified to

P ′′
1 (1|z) =

⎧⎪⎨⎪⎩
P ′

1(1|z)l+1 + P1(1|z)l·
· a P2(N+1|z)l∑ K

z′=1 P (z′)l P1(1|z′)l P2(N+1|z′)l
P (z)l t = 1

P ′(t|z)l+1 if t �= 1.

(20)



Let

A′
l+1 =

T∑
t=1

P ′
1(t|z)l+1 (21)

A′′
l+1 =

T∑
t=1

P ′′
1 (t|z)l+1 = A′

l+1 + P ′′
1 (1|z)l+1 − P ′

1(1|z)l+1. (22)

Eq. (15) is simply rewritten as

P1(t|z)l+1 =
P ′′

1 (t|z)l+1∑T
t′=1 P ′′

1 (t′|z)l+1

=

⎧⎨⎩
P ′′

1 (1|z)l+1
A′′

l+1
if t = 1

A′
l+1

A′′
l+1

P1(t|z)l+1 otherwise.
(23)

Similarly, it can be shown that (17) results in

P ′′
2 (d|z) =

{
P ′′

1 (1|z) − P ′
1(1|z) if d = N + 1

P ′
2(d|z)l+1 otherwise.

(24)

Let

B′
l+1 =

N∑
d=1

P ′
2(d|z)l+1 (25)

B′′
l+1 =

N+1∑
d=1

P ′′
2 (d|z)l+1 = B′

l+1 + P ′′(N + 1|z)l+1

= B′
l+1 + P ′′

1 (1|z)l+1 − P ′
1(1|z)l+1. (26)

Then (18) takes the form

P2(d|z)l+1 =
P ′′

2 (t|z)l+1∑N+1
d′=1 P ′′

2 (d′|z)l+1

=

⎧⎨⎩
P ′′

2 (N+1|z)l+1
B′′

l+1
if d = N + 1

B′
l+1

B′′
l+1

P2(d|z)l+1 otherwise.
(27)

Finally, we proceed to updating P (z)l+1. Let

Rl =
N∑

d=1

T∑
t=1

n(t, d) (28)

P ′(z)l+1 =
1
Rl

N∑
d=1

T∑
t=1

n(t, d)P (z|d, t)l+1 (29)

be the values admitted by R and P (z), defined by (11) and (10), before appending the
(N + 1)th document. It is straightforward to show that

Rl+1 = Rl + a (30)

P (z)n+1 =
1

Rl+1
[Rl P ′(z)l+1 + P ′′

1 (1|z)l+1 − P ′
1(1|z)l+1] . (31)



The method can be generalized for a document with more than one terms, if we
assume that every time we deal with an elementary document having just one word
and we incrementally append as many incremental documents as the terms found in
the document. Additional recursions can be applied in order to process more than one
documents. The proposed method will be referred to as recursive probabilistic latent
semantic indexing (RPLSI).

5 Experimental results

To demonstrate the performance of the proposed updating algorithm for PLSI we have
employed a subset of 348 documents from the 20-Newsgroups corpus [14]. The doc-
uments used belong to 4 classes. For each document we have kept only 100 terms,
those having the highest information gain. After having estimated the parameters of
PLSI for the corpus of 348 documents, we start appending a number of documents in-
crementally. We have compared the accuracy of the proposed updating method with
that of the folding-in method. PLSI computes the probabilities P (t|z) and P (d|z),
z = 1, 2, . . . ,K for K = 4 by resetting the calculation each time a new document
is appended. RPLSI and folding-in update the probability values each time a new doc-
ument is appended. Subsequently, the mean squared error (MSE) has been measured
between the exact probability values determined by PLSI and the values estimated by
RPLSI by averaging over the latent variable z that refers to classes. The mean squared
error between the exact probability values determined by PLSI and the values estimated
by folding-in has also been measured. The computations have been performed for 10
and 20 documents. Figures 2 and 3 demonstrate that the proposed method outperforms
the folding-in method with respect to the MSE for both P (t|z) and P (d|z). It can be
seen that the proposed RPLSI yields almost always a smaller MSE than the folding-in
method when a new document is appended. The estimation of P (t|z) is more accurate
than P (d|z).

6 Conclusions

A new method for updating the parameters of the PLSI has been proposed that does
not require to train the model from the beginning. The proposed method updates not
only the probabilities of the new document as folding-in method does, but also all the
probabilities of the terms and documents. We have reported first promising experimental
results that indicate a better performance than folding-in. In the future, experiments will
be conducted with corpora having more documents and more classes. The proposed
technique was derived with respect to certain assumptions. Relaxing the constraints is
another point of further research. We do not claim that the proposed method yields a new
language model. Therefore, it is pointless either to measure perplexity or to compare
the model with the latent Dirichlet allocation method.
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Fig. 2. (a) Mean squared error for P (d|z) for 10 documents. (b) Mean squared error for P (t|z)
for 10 documents.
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Fig. 3. (a) Mean squared error for P (d|z) for 20 documents.(b) Mean squared error for P (t|z)
for 20 documents.
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