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Summmmary. A novel approach to suppression of speckle noise in remote sensing
inaging based on a combination of segmentation and optimum L-filtering is pre-
sented. With the ald of a suitable modification of the Learning Vector Quantizer
(LVQ) nenral network, the image is segmented in regions of (approximately) homo-
geneons statisties. For each of the regions a minimum mean-squared-error {(MMSE}
L.-filter is desipned, by using the histogram of grev Jevels as an estimate of the parent
distribution of the noisy observations and a suitable estimate of the {assumed con-
stant) original signal in the corresponding region. Thus, a bank of L-filters results.
with each of them corresponding to and operating on a different unage region.
Simmlation results are presented, which verify the (qualitative and quantitative)
superiority of our technique over a number of commonly used speckle filters,

1. Introduction

One of the major problems encountered in Remote Sensing and Ultrasonic
Iinaging is speckle noise reduction. This type of noise contamnination, which
is met in all coberent imaging svstems, results from the scattering of the
transmitted wave from terrain inhomogeneities which are small with respect
to the wavelength [4]. A multiplicative model for speckle noise is implied by
the fact that the standard deviation is directly proportional to the mean and
it has been verified experimentally [9).!

The speckle artifact severely degrades the information content of an im-
age and poses diffienlties in the image analysis phase. Thus 1t is desirable
to suppress the noise while at the same time retaining the useful informa-
tion unimpaired. Several algorithins have been proposed atming at reducing
speckle noise in images (e.g., (2, 9, 12, 14, 11}}. Since the ultimate goal of any
speckle suppression scheme should be the reduction of speckle contrast to en-
hance the information content of the image, edge and detail preservation are

! Nevertheless, it must be mentioned that speckle noise 1 only approximately
multiplicative in regions of the object containing fine details that cannot be
resolved by the imaging systemn (18] and the experimental verification in [9] was
based only on flat areas of the image. In spite of this, speckle nose is usually
madelled as multiplicative in practice.
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crucial in a speckle filter along with noise reduction. Thus, spatially-varying
filters are reguired that are also able to deal with the nonlinear model gov-
erning the degradation process [16].

An important class of adaptive filters is what we call here “segmentation-
hased filters”™, that is, filtering processes combining segmentation and (non-
adaptive) filters, The underlying idea is that, with the aid of a suitable seg-
mentation algorithm, a statistically non-stationary image can be divided into
approximately stationary regions which ean, in turn, be processed by filters
designed on the basis of the corresponding statistics. Thus, we have a set
of filters with each of them corresponding to and operating on a different
region of the image, with the various regions being dictated by the segmenta-
tion result. In this paper, we report such an approach to speckle suppression
emploving a modification of the Learning Vector Quantizer neural network
at the segmentation stage and non-adaptive minimum mean-squared error
(MMSE) L-filters at the filtering stage, designed with the ordering statisti-
cal information acquired from the segmentation stage. The proposed filters
have been tested on a simulated image containing a bright target in a dark
background and the results compare favourably to those produced by @ single
L-filter desigued with the sample statistics of the image considering this as
statistically homogeneous. Results of comparison with a number of commonly
nsed speckle filters are also given, which rank our method among the first po-
sitions. The noise-smoothing performances of the various filters are compared
on the basis of the resulting receiver operating characteristics (ROC's) and
an SNR quantity measuring the dispersion of the image pixels in the target
and backeround regions from the corresponding true means. The contrast
enhancement effect of the filters is quantitatively assessed through a target
COTITast Ieasure.

The paper is organised as follows. Qur method is presented in detail in see-
tion 2. Experimental results are included in section 3, along with a comparison
with a number of other well known filtering strategies. Some implementation
issues are discussed in section <1, which concludes the paper.

2. Segmentation-Based L-Filtering

In this section we present an adaptive nonlinear approach to speckle suppres-
sion in images. The adaptivity of our method comes from the fact that the
image is first segmented into regions of different characteristics and each of
the resulting regions is processed by a different filter. L-filters are emploved
to deal with the nonlinear nature of the noise. A number of approaches to the
seementation of speckle images have been reported (e.g.. (10]). A recently in-
troduced segmentation technique, that we have adopted in this work, employs
a modification of a well known self-organising neural network, the Learning
Vector Quantizer (LVQ), based on the Ls mean which has been shown to be
more suitable for speckle images {7].



Spoeckle Nowse Reduction in Remote Sensing [maging 40

In the sequel, a brief presentation of LVQ is given follow «] by the descrip-
tion of its modification, Ly LVQ. along with a discussion of the need for this
modified form. The derivation of the MMSE L-filter for the case of a known
constant signal corrupted by noise is included both in the unconstrained and
constrained {unbiased) cases. In most cases it is unrealistic to assume that
the signal is constant. However, since the filters are matched to specific re-
gions of the image. this simplifying assumption is a good approximation of
the reality for practical purposes.

2.1 The Learning Vector Quantizer and its Lz Mean Based
Modification

Learning Vector Quantizer (LVQ] [6] is a self-organising neural net work (NN
that belongs to the so-called competitive NN's. It implements a nearest-
neichbour classifier nsing an error correction encoding procedure that could
be characterised as a stochastic approximation version of K-means cluster-
ine. Let us first present the basic idea. As in the Vector Quantization (VQ)
problem. we have a finite set of variable reference vectors {or “rode vectors”
in the VQ terminology ) {wi{t);wy € RN, i=1,2,...,p}and a set of training
vectors x(t) € RY where t denotes time and we wish to classify the training
vectors into p classes represented by the vectors w. These representative vee-
tors are obtained by following an iterative procedure where at each iteration
step ¢ the current feature vector x(t) is compared to all the w;(t) and the
best-matching w, {1} is updated to better comply with x{t}. In this way, in
the long ruu, the different reference vectors tend to become specifically tuned
w0 different domains of the input x. The learning stage of the algorithm is
described in the following 4-step procedure:

i, Initialise randomly the reference vectors wi{0),i=12,...,p
i At time step ¢, find the “winner™ class ¢ such that:
lx(t) — we(t)]} = min {]Ix(t) - w, (]} - {2.1)
: .

iii. Update the winner:
w.(t+ 1) = w.(t) + a(t)(x{t) — w{t}). (2.2)
iv. Repeat steps (i) and (iii) until convergence.

The gain factor a{t) is a scalar parameter (0 < a < 1) which should be a
decreasing function of time in order to guarantee the convergence to a unique
limit. In the recall procedure, the class with which the input vector x{t) is
most closely associated is determined as in (2.1) where now w, is the i-th
reference vector after the convergence of the learning procedure.”
* To be precise, we should note that the algorithm described above is the “single-
winner “version of LVQ. In its general “multiple-winner” form. step 1 above
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It is easy to see that eq. {2.2) above is in fact a recursive way of comput-
ing the average of the training vectors classified to the class ¢ (this is easily
verified by choosing a{t) = 1/(¢ + 1}}. Thus. after the end of the learning
phase, the reference vectors will correspond to the centroids of the associated
classes. However, it should be noted that the arithmetic mean approximated
by the basic LVQ, deseribed so far, is not the best possible estimator of the
mean level in a speckle image. It has been proved [3] that the maximum like-
lihood estimator of the original noiseless image is the Ly mean [16 (scaled by

5,

%%) of the noisy observations. This result leads us to consider a modification
of the standard LVQ algorithm, in which the reference vectors correspond to
the L, mean instead of the arithmetic mean. The learning and recall parts
of the modified algorithm, which we call Ly, LVQ, are exactly analogous to
those of the standard LVQ except that the elements of the reference and
input vectors are replaced by their squares. This simple modification allows
for the computation of the L, means providing us at the same time with
an algorithm that is proven to be convergent in the mean and in the mean
senare sense [7].

2.2 MMSE L-Filter Design for a Known Constant Signal
Embedded in Noise

The L-filter [1], defined as a linear combination of the input order statistics,
has some distinet advantages, making it a right choice for tasks such as the
one treated here: it can cope with nonlinear models, it has a relatively simple
MMSE design, and furthermore it performs at least as well as, for example,
the mean and the median filters, as it includes these filters as special cases
i1].

In the sequel, s denotes the constant and known signal, which is corrupted
by white? noise, independent of s, yielding the noisy observation r. The
output of the L-filter of length M is given by:

y::a’x {2.3)
where a = {ay.as.....ax)? is the L-filter coefficient vector and x =
(r(1y. 721, .- 2yapy) | is the vectar of the observations arranged in ascending

order of magnitude (i.e., order statistics), We will design the optimum in
the mean-squared error (MSE) sense L-filter, that i1s, determine the vector a
minimising F{{s — y)*}. By using {2.3) we obtain:

involves npdating not only the winner vector but its neighbours as well with
the neighbourhood defined either in a topological [6] or in a vectorial distance
[5] sense.

In fact. speckle noise is locally correlated. Smith et al. {17] argue that, for the
observations to be independent, they must belong to different speckle correlation
cells. Sinee our purpose is to apply filters scanning the image in raster fashion,
such a recommendation cannot be used directly, thus the whiteness assumption
15 made to approximate the real situation.
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E{(s-y)*} = s> +aTRa—2sa’p (2.4)

where R = E{xxT} is the autocorrelation matrix of the vector of the or-
dered observations and p = E{x} = (E{x(l)},E{x(z)},...,E{z(M)})T is
the vector of the expected values of these observations. Setting the derivative
of (2.4) with respect to a equal to zero yields the following expression for the

optimum coefficient vector:
a=sRu (2.5)

It remains to compute the ordering statistics p and R. Expressions for
the evaluation of these quantities are given in [1] and involve the calculation
of the marginal and bivariate probability density functions (pdf’s) of the
ordered input given its parent distribution:

E{zgrs) = / / 2y fayze, (@ y)dzdy (i < ) (2.6)

E{E(i)} = /xfm{i)(x)dx (27)

where
frm(x) - }(1'};‘::.--1 (z)[1 - Fz (I)]M—if:c(x) (2.8)

Fregy(@y) = KiiFi ' (@Fe(y) - F@)pP
x[1 = Fe ()M f2(2) f2(v) (2.9)
and
M!
K= oo o (2.10)
M!

Ki‘j = (2.11)

i - DI —i-1DIM —j)!

Notice that when we are dealing with digital images, the above random vari-
ables are of discrete type. Thus, the integrals in egs. (2.6), (2.7) are in fact
discrete sums.

The minimisation of the MSE subject to the constraint that a provides
an unbiased estimate of s, i.e.,

s=E{y} =a"p, (2.12)
is performed as in the case of additive noise [1] yielding the expression

sRu
a= m (213)

for the coefficient vector of the unbiased L-filter.
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3. Experimental Results

To test the performance of our method in speckle smoothing and detail preser-
vation, an image consisting of two regions, the target and the background, has
been used. For the classification of the image pixels into two groups, we have
employed the Ly LVQ algorithm with parameters p = 2 and N = 49, trained
on a large set of pattern vectors that have been produced by a raster scanning
of the image with a 7x 7 window. The histograms of the two regions produced
by the segmentation have been used as estimates of the parent background
and target pdf’s, i.e., of the pdf of the random variable z in the background
and in the target areas, respectively, for the design of the associated L-filters.
Filters of order 3 x 3 were designed by calculating the ordered statistics from
eqs. (2.8)-(2.11) and feeding the results to eqs. (2.6), (2.7) to estimate the
quantities R and p needed in the computation of the filter coefficients (2.5).
The integrals in (2.6) and (2.7) were replaced by sums over the range 0 to 63
since the image’s grey levels lie in this interval.

A pair of L-filters have been designed by substituting s in (7) with the L,
means of the two regions resulted by the segmentation procedure described
above.

The arithmetic mean and the median filters have also been used in our
comparisons along with a number of well-known speckle filters:

i. Homomorphic filter [15]
ii. Frost filter {3, 2]
iii. Sigma filter [9]
iv. Variable-length Median filter [12]
v. Taylor filter [14]

Some detection theoretic performance measures, namely, the probabilities
of detection and false alarm, and the receiver operating characteristic have
also been used in our comparisons of the filters considered, to allow for nu-
merically comparing their relative performance. The probability of detection
corresponding to a threshold chosen so that the probability of false alarm is
approximately equal to 10% has been tabulated in table 3.1 for the original
image and its processed versions (linear interpolation was used, where nec-
essary, to estimate Pp from its two closest values). The Pp values listed in
table 3.1 verify the enhanced detectability obtained by the filters that exploit
the segmentation information, compared to their counterparts that are de-
signed with the stationarity assumption. The low probabilities of detection
for the median and the mean filters show their inadequacy for this kind of
application.

Due to its strong dependency upon the operating point of the detector,
the probability of detection Pp, for a fixed probability of false alarm P,
may be proved an inadequate measure of detection performance. A more.
reliable figure of merit can beiderived by examining the receiver operating
characteristic (ROC). A singl ﬁiﬁ;ﬁber that can completely characterise the
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Table 3.1. Dotection Performance Measures

NMethod 'y Py Threshold Pr Area
T % e nnder ROC
Tmage KI9S | 3500 22 37.951 0717116 |
[ Thresholdng | 10425 | 3319 1 2| ;
“Median TR737 | 3745 91 ] 30.8838 | 0743840 |
w,w 11.04 20 5 E
Average 9175 411907 20 142592 1 0761905
1148 | 45.62 19 §;
Comomorphic | 8.0345 | 36.91 20 1088 0754272 ||
10.051 | 10.987 19 |
[ Frost 8.71 13.73 17 16021 077281 ]
| 12.3 50,11 16 ;
1 Sigma 617 FIEYH 20 [TA2756 0761576 |
? 11476 | 45.61 19 _ ;
VUL Median R78 A7 44 21 306336 | 0731703
6] | 40.854 20 '
Tavlor 9T | 409 ] 20 42592 | 0.761882 ]
| 1148 | 4561 19
L-hlter 5674 AR 21 41.57 0703331 |
10.7 | 13.343 20 |
L-tilter pair 7838 | AHL366T 15 146027 0764672 |
10,406 | 15.3082 17

whole ROC is the area under this curve and is included in table 3.1, The
comparison with respect to this figure of merit is again seen to be favourable
for our method.

We have also compared the various filtering strategies from the viewpoint
of the dispersion of the background and target pixels from the corresponding
trne sample means relatively to the dispersion in the original image. A mea-
sure of this relative dispersion, that could be called a signal-to-noise ratio, is
dofined for the target area as

Etm;‘*, (x4 - mr‘

SNRy = (3.1)

Ht.zrgm(*‘r! )

where x; and &, denote the vahies of the original and the filtered image,
respectively, and mp corresponds to the average level in the target that is
estimated from the original image on the basis of our a-prior ]mma’ls*‘lgf* (}f
the target position. shape, and dimensions. The background SNR, SNRp., i
similarly defined. Table 3.2 summarises the SNR values (in decibels) for our
set of processed images.

The results presented thus far, demonstrate that owr method outper-
forms all of the filters considered except for the Frost filter, which attains
significantly higher values for the ROC area and the SNR compared to the
segimentation-based approach. Nevertheless, these higher figures of merit for
the Frost filter are at the cost of lower target contrast and an amount of
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Table 3.2. Relative dispersion in the target and background areas

“Method T SNRyp (dB) | SNRy (dB)
Median - 0.914986 0.885867
Anthmetic Mean | 1.55226 15066
Homomorphie 7 156488 1.501449

TFrost 1 459596 102855

 Siema i 1.54537 1.49875

VL AMedian [ 0.812148 0613674
Taylor 55216 15066
L-hiter [ 1.09913 1.01087

" L-hlter pair [ 2.28008 2.1488

blurring. This could be expected since, as noted in [11], Frost’s filter cannot

adequately smooth homogeneous areas and preserve heterogeneous areas at

the same time. A quantitative verification of this point 15 provided by the
following measure of target contrast

Pl Ll ) (3.2)

mr -+ g '

where, as before, mp and my denote the average levels in the target and the

background, respectively. The contrast values for the original as well as the

filtered Images are tabulated in table 3.3. Note that the Frost filter yields

the lowest target contrast among all the filters studied here, with the highest
value obtained through our method.

Table 3.3. Target contrast

T Method /Tinage | Contrast
Ongnal 0.230441
Median 0.230212
Average TTT0.230541
Homomarphic 0231008
Frost 0.187298
Sigma 0.230571
V. L. Median 0.225513
Taylor 0.230541
L-filter 0.238434
L-flter pair 0.238052

4. Conclusions

We have presented a method for the suppression of speckle noise in remote-
sensing imagery based on the idea of segmenting an image into stationary
sub-images prior to processing each of them with a filter that is designed to
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be optimal for cach particular sub-image on the basis of the (statistical) infor-
mation provided by the segmentation, Our method employs a modification of
the LVQ algorithm based on the L; mean as a means of sczmentation, while
its filtering stage uses L-filters that are optimal in the MSE sense. The simu-
lation results verified the superiority of our approach to the single L-filter as
well as to a number of commonly used speckle filters.

The L. LVQ training and the subsequent computation of more than one
filters increase the computational complexity of our method to more than
twice the computation needed in a conventional approach. However, this need
not to be a problem if the processing can be done off-line. Moreover, the
generalisation capability of the LVQ NN, which has already been verified by
simulations on SAR images [13], could be exploited to considerably reduce
the computational load by using a single fixed network for segmentation,
trained on a sufficiently large and representative sample of images.
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