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ABSTRACT
As a result of rapid advances in genome sequencing,

the pace of discovery of new protein sequences has
surpassed that of structure/function determination by
orders of magnitude. This is also true for metal-binding
proteins, i.e. proteins that bind one or more metal atoms
necessary for their biological function. With regard
to metal-interacting residues, the question arising is
whether these interactions apply additional evolutionary
constraints and to what extent. We try to answer this
question for a subset of metal-binding-proteins, namely
zinc-binding proteins, which play an important role
in a number of biological processes, as exemplified
by the tumor-suppressor protein p53. Our results
shows significantly higher evolutionary pressure on
zinc-interacting residues, a result which can be used
in a number of other studies, including zinc-binding site
prediction.

1. INTRODUCTION

Bioinorganic chemistry is the field dealing with the
crucial interactions between inorganic metals and
biological molecules of interest [1]. An important
subset of biological molecules, metallo-proteins, plays
a fundamental role in numerous biological processes, as
evidenced by the fact that about one third of determined
protein structures contain metal-binding sites, as shown
by a simple Protein Data Bank (PDB) search [2].

A great deal of effort has recently been devoted to
the analysis and prediction of metal-binding-sites. Many
researchers have focused on the analysis of their structure,
either with respect to its geometry as in Harding et al.
[3] and Tainer et al. [4] or its chemical properties as
in Karlin et al. [5]. Other studies perform analysis
based on density functional theory/continuum dielectric
methods as in Dudev et al. [6]. Such analysis can have
significant impact on better functional characterization of
metal-binding proteins, drug design, database searching
for metal-binding-proteins, as in Andreini et al. [7], or
metal-binding-site (MBS) prediction.

Regarding MBS prediction, a number of recent
approaches have been proposed, including an
energy-based method by Laurie et al. [8], a support-vector

machine predictor of cysteine binding state by Passerini
and Frasconi [9], and a recursive neural network predictor
of disulfide bridge connectivity by Vullo and Frasconi
[10].

A key piece of information in some of these methods
[9, 10] is conservation. Their results are encouraging;
however, no large-scale analysis has been performed
on conservation of metal-interacting residues. Such a
study could provide justification for using conservation
information as a feature for MBS prediction. Additionally,
it could provide further insight to the functional
importance of certain metal/residue combinations by
comparison of the extent of residue conservation among
different metal ions and protein families.

In this study, we focus on conservation analysis of
zinc-interacting residues. Zinc is one of the metals playing
a crucial role in a number of biologically significant
proteins, including p53 [11], a tumor-suppressor
protein. This work investigates whether there is
higher selective pressure on zinc-interacting residues
vs. non-zinc-interacting residues.

For this purpose, we derived a non-redundant set of
zinc-interacting proteins from PDB. Because this set did
not contain enough members for a large-scale analysis,
we used homology search via PSI-BLAST [12] to obtain
additional putative zinc-interacting proteins, limiting our
selection to one ortholog protein from each species.
The known-structure proteins were grouped according to
families as defined in Structural Classification of Proteins
(SCOP) [13], while their orthologs were also included in
the same family. Protein grouping by family was preferred
since same family membership in SCOP indicates clear
evolutionary relationship. A multiple sequence alignment
(MSA) was performed on all members of each family.

We applied two approaches in our analysis. In the first
approach, we measured the identity ratio, in the MSA,
for all zinc-interacting residues and compared it to the
identity ratio for non-interacting residues. This approach
was limited only to known-structure sequences, since
for unknown-structure sequences the metal-interacting
residues cannot be guaranteed. The mean identity ratio of
all residues within a family was calculated and the means
of all families were compared.



We also pursued conservation analysis based on
an information theoretic approach, where we calculate
separate substitution matrices for zinc-interacting and
non-zinc-interacting MSA columns for each family.
These matrices were compared using the relative entropy
metric, as described in Altschul [14]. This metric
serves as a distance measure between the actual and the
theoretically expected probability distribution of residue
substitutions, where higher relative entropy indicates
higher selective pressure.

2. METHODS

2.1. Dataset

We created a dataset of zinc-interacting structures with the
help of PDB [2] using an appropriate query, where we
required structures to have resolution better than 2.5Å and
no mutant residues. From the structures meeting these
criteria, we chose only the ones classified in the following
SCOP classes: 1) all alpha proteins, 2) all beta proteins, 3)
alpha and beta proteins (a+b), 4) alpha and beta proteins
(a/b) and 5) membrane and cell surface proteins and
peptides. We also required sequences to have a length
greater than 40 residues. A non-redundant set was derived
from the proteins meeting these criteria with the help of
the algorithm by Li et al. [15], at the 90% identity level,
as implemented in PDB. In total, 481 PDB files containing
zinc were identified, where some of these files may belong
to more than one class. The alpha class contained 105
files, the beta class 165, the a+b class 177, the a/b class
174 and the class of membrane and cell surface proteins 1
PDB file.

2.2. Zinc-interacting residues

For each structure, the metal-interacting residues were
identified using a distance cut-off of 4Å from the
metal atom. Although this criterion does not take into
account the biological significance of this interaction,
it is probably the best criterion currently available for
automated metal-interacting residue identification. The
distance cut-off of 4Å was chosen as an upper empirical
bound, as described in Harding et al. [3]. Only the
domains, as defined in SCOP, containing zinc-interacting
residues were selected for multiple sequence alignment
and these domains were afterwards grouped by SCOP
family. A small number of domains from the original
set were discarded because their species could not be
identified based on the NCBI taxonomy database [16, 17].

2.3. Multiple sequence alignments(MSA)

Initial multiple sequence alignments for the domains
containing metal-interacting residues were performed
using PSI-BLAST (2) against the NCBI NR database
[16, 17], with an e-value cutoff of 10−5. In order to
identify orthologs, for each protein, we selected only the
reciprocal best hit from each species in the PSI-BLAST
reports. In the reports, sequences corresponding to the
same species as the query sequence were also discarded.

Sequences were further filtered by discarding entries with
the following keywords: synthetic, putative, probable,
predicted, hypothetical, unnamed, unknown, unidentified,
designed, vector. The resulting sequences were grouped
with known-structure sequences into SCOP families and
the multiple sequence alignments were further refined
using MUSCLE (multiple sequence comparison by
log-expectation) [18].

2.4. Identity ratio

The identity ratio for a single residue was calculated as
the ratio of identical residues and the length of the MSA
column. This ratio was calculated only for residues of
known-structure sequences, while sequence gaps in the
MSA columns were not included in the calculation. The
mean zinc-interacting and non-interacting identity ratios
of each family were calculated by simple averaging over
all zinc-interacting and non-interacting residues of each
family respectively.

2.5. Substitution matrices

Within each family MSA, a MSA column was defined as
zinc-interacting if it contained at least one zinc interacting
residue. Substitution matrices were created separately for
non-zinc-interacting and zinc-interacting MSA columns,
using all the sequences in each MSA, as described in
Henikoff & Henikoff [19]. More specifically, each
element si,j of the substitution matrix is calculated as in
(1)

si,j = log2

(
ci,j

ei,j

)
, (1)

where ci,j and ei,j are the observed and expected
frequencies respectively. The observed frequencies
are calculated separately for the zinc-interacting and
non-interacting MSA columns. The expected frequencies
are calculated from all MSA columns using the formula
described in Henikoff and Henikoff [19]. The matrices
were then compared based on the relative entropy metric,
shown in (2), as described in Altschul [14].

H =
∑

i,j

ci,j × si,j , (2)

where ci,j and si,j are the observed frequency and the
elements of the substitution matrix respectively.

3. RESULTS

3.1. Identity ratio

The mean identity ratio for zinc interacting residues is 0.7,
while for non-interacting residues, it is 0.51. The t-test
on the two means resulted in a p-value of 7.25 × 10−23,
which is highly significant. The histogram for the mean
identity ratio per family is shown in Figure 1. This
result clearly shows the higher evolutionary constraints for
zinc-interacting residues of known-structure sequences.
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Figure 1. Histogram of the identity ratio of
non-zinc-interacting vs. zinc-interacting residues.
Zinc-interacting residues exhibit higher selection
constraints.
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Figure 2. Histogram of the relative entropy of substitution
matrices of zinc-interacting vs. non-zinc-interacting MSA
columns. Relative entropy is higher for zinc-interacting
MSA columns.

3.2. Relative Entropy

Identity ratio analysis on known-structure sequences does
not provide a full picture of each family MSA, since it
focuses only on sequences of known-structure. For this
reason, substitution matrices were created for each family,
for zinc-interacting and non-zinc interacting columns.
Relative entropy was calculated for each of these matrices
and the histogram for all 212 families is shown in Figure
2. The mean relative entropy for zinc interacting MSAs
is 6.35, while for non-interacting residues it is 1.42.
The difference of the two means is highly significant, as
indicated by the t-test p-value of 1.84× 10−93.

4. CONCLUSION

In this study, we pursued analysis of zinc-interacting
proteins’ conservation. Zinc-interacting proteins take

part in a number of important biological process as
exemplified by the tumor-suppressor protein p53. Our
statistical methodology showed significantly higher
conservation of zinc-interacting residues compared to
non-zinc-interacting residues. This conclusion is drawn
from two types of metrics, identity ratio, which is based
only on known-structure sequences, and relative entropy,
which is based on all orthologous sequences.

However, a great deal of work remains to be done.
More specifically, analysis needs to be extended to
other biologically significant metal ions. Moreover,
the conservation levels between different families need
to be compared, in order to extract useful biological
hindsight into metal-binding site structure and function.
The completion of these studies can have significant
implications for metal-binding site prediction, protein
functional characterization and drug design.
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