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Abstract—In this paper a novel view-invariant movement
recognition method is presented. A multi-camera setup is used
to capture the movement from different observation angles.
Identification of the position of each camera with respect to the
subject’s body is achieved by a procedure based on morphological
operations and the proportions of the human body. Binary
body masks from frames of all cameras, consistently arranged
through the previous procedure, are concatenated to produce
the so-called multi-view binary mask. These masks are rescaled
and vectorized to create feature vectors in the input space.
Fuzzy vector quantization is performed to associate input feature
vectors with movement representations and linear discriminant
analysis is used to map movements in a low dimensionality
discriminant feature space. Experimental results show that the
method can achieve very satisfactory recognition rates.

I. INTRODUCTION

Human behavior analysis is an active research field with
a wide range of applications. In visual surveillance it can
be used to recognize human action patterns and increase
robustness and area coverage in security systems. In enter-
tainment industry it can provide high quality multiperspective
viewing experiences and 3D scene/actor reconstructions for
digital cinema movies and interactive games. Important part in
this analysis is the movement recognition procedure. The term
movement can be described in various and different ways. In
this paper we use the description proposed in [1]. According to
this, every movement is composed by a number of dynemes.
A dyneme is defined as the elementary constructive unit of
movement. In this way every movement can be described in a
unique chain of dynemes with some contextual meaning, e.g.,
a walking step.

In order to be applicable to real world problems a move-
ment recognition system should be able to deal with motion
speed changes and style variations both between different
subjects performing the same movement and between dif-
ferent realizations of a movement by the same subject [2].
Furthermore the camera position relatively to the observed
human body is a determinant factor for such algorithms [3].
The majority of algorithms that have been proposed use one
camera and require the same view angle during both training
and recognition phases. This angle must ideally be the one

that captures the most discriminant motion information and is
usually the side one. Such algorithms will fail if the subject
under study is captured from a different view and angle or
changes motion direction over time. In order to overcome this
limitation, researchers have come up view invariant movement
representations and recognition approaches. Algorithms that
use more than one views have been also proposed, since such
information can improve the recognition ability, as indicated
in [4].

Recent research results in the area of single-view view-
independent human movement recognition are reviewed in [5].
In this review, methods are divided into two categories: State-
space and template-based methods. In the first category, each
posture specifies one possible state. Hidden Markov Models
(HMM) [6][7][8] are often used to describe the transition
between successive states, assuming independence between
observations. A variant of HMM, Conditional Random Fields
(CRF) overcome this independence assumption and experi-
mental results show that they can model dependencies between
features and observations better than HMMs [9]. In template-
based methods, view invariant features are used to uniquely
describe the movements. A computational representation of
human movement that captures significant changes in the
speed and direction of motion represented by the spatio-
temporal curvature of a 2D trajectory is proposed in [10]. This
representation is compact and view-invariant. Movements with
the same number of instants are compared using a matching
criterion and similar movements are grouped together. In [11]
contour point correspondences are used to obtain a compact
movement representation which is invariant to the camera
view angle. Differential geometric surface properties, such
as peaks, pits, valleys and ridges, are utilized to produce
movement descriptors capturing both spatial and temporal
properties. In [12] human movements are represented by three-
dimensional shapes formed by the body silhouettes in the
space-time volume. The method exploits the solution to the
Poisson equation to extract various shape properties, such as
local space-time saliency, movement dynamics, shape structure
and orientation and produce features to represent and classify
movements.



View invariant movement representation and recognition can
be also achieved through the usage of a multi-camera set-up.
In [13] visual hulls are computed from multiple view video
and accumulated within a time period to form Motion History
Volumes (MHVs). MHVs are transformed into cylindrical co-
ordinates around their vertical axes and view-invariant features
in the Fourier domain are extracted.

In this paper we present a novel view invariant method that
utilizes a synchronized multi-camera set-up. The view/camera
correspondence problem, namely the identification of the view
angle relative to the human body for each camera, is solved
using an efficient method based on morphological operations
and anthropometric ratios. Using this information, single- or
multi-view movement recognition is achieved through fuzzy
vector quantization (FVQ) and linear discriminant analysis
(LDA), similar to the approach proposed in [14].
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Fig. 1.
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A convergent eight-view camera setup and its capture volume.

II. PROPOSED METHOD

The proposed method operates upon data captured by a
convergent multi-camera setup such as the eight-camera setup
depicted in Figure 1. A collection of frames from all syn-
chronized cameras acquired at the same time instance are
referred as a multi-view frame (Figure 2), while a number
of consecutive multi-view frames form a multi-view video.
The common camera coordinate system is placed at the center
of the capture volume and its axes are fixed and known in
advance. A subject performing a movement inside the capture
volume is observed from all eight cameras and every single-
view frame depicts the same movement instance captured from
a different viewpoint. The coordinate system rigidly attached
to the subject’s body is assumed to have axes that are parallel
to the cameras coordinate system, while its orientation can
vary, depending on subject’s movement direction as he may
move freely within the view volume.

Clearly, the eight views captured at a certain time instance
can depict a different view of the subject as he moves freely
in space. For example, whereas camera #1 can at a certain
time instance depict a frontal view of the subject, a change
in movement direction might result in this camera depicting

a side view. Thus, the camera correspondence problem i.e.,
the identification of the cameras position with respect to
the subject’s coordinate system, must be solved before the
recognition process. Since the positions of the cameras are
fixed and known in advance, identifying the location (view
angle) with respect to the body of a single camera is enough
to derive locations (relative to the body) of all cameras and
rearrange them in a consistent manner.

Fig. 2. A multi-view frame depicting an instance of a jumping movement.

A. Camera correspondence problem

In order to solve the camera correspondence problem binary
body masks are extracted from every single-view frame using a
background subtraction [15][16], or chroma keying technique.
The bounding boxes (BB) of these masks are evaluated and
downscaled. Subsequently, the lower and the upper parts of
the body mask (roughly corresponding to head and legs) are
rejected. This is done by rejecting the upper 20% and the lower
30% of each BB. On the resulting masks, a number of erosions
and dilations are performed in order to reject the limbs and
keep only the torso. The number of erosions and dilations is
adaptively found. In more detail, for every binary mask, its
distance map is computed and the number of erosions and
dilations is set equal to half the maximum distance found in
the distance map. The result of this procedure can be seen in
Figure 3, where bounding boxes of the torsos are depicted in
red color.

Fig. 3. Body bounding boxes.

For every multi-view frame, ratios R between width and
height of the resulting torso BBs are computed. Due to the
torso proportions the view in which the smallest ratio is
observed is labeled as the side view. Since the cameras setup
is symmetrical, it is expected that for each pair of opposite
facing cameras (e.g. 0°—180°, 45° —225°) this ratio will be the
same. Thus, we cannot distinguish between the right and left



side view, or the frontal and rear view. However, the translation
of the center of mass of the torso’s BBs signifies direction of
motion and can be used to dissolve this ambiguity. In more
detail for those views that the smallest R ratio is observed
the torso translation is calculated. The right side camera
is the one in which a left to right translation is observed.
Since the cameras spatial arrangement is a priori known, the
function that provides a new view-consistent index f() for each
camera whose original index is i, is f (i) = (d —2 —|—z’)Q,
where d is the original index of the camera identified as
the right side view at 90 degrees, () the total number of
cameras and ()Q denotes the modulo Q operator. Through this
circular rearrangement, the camera with new index 1 always
corresponds to the frontal view.

B. Preprocessing

After the solution of the camera correspondence problem
each camera is consistently labeled with the view, in relation
to the body, that it depicts. We can perform movement
recognition utilizing one or more views, based on a procedure
similar to the one described in [14]. The number of used
views can vary. All eight available views were included in
our implementation. By using more than one views, the
information captured from different perspectives is exploited
and leads to a better movement representation.

Every binary mask that resulted from background subtrac-
tion is centered at the body’s center of mass and rescaled in
order to produce binary posture frames with the same size.
Single-view posture frames corresponding to five movements
are shown in Figure 4.
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Fig. 4. Five single-view posture frames of actions walk, run, jump in place,
Jjump forward and bend.

Multi-view binary posture frames are then created by taking
into account the new camera indices, i.e. by placing the frontal
camera first, followed by all other cameras in a clockwise
manner. An eight-view posture frame from a walking sequence
can be seen in Figure 5. The resulting n-view posture frames
are scanned column-wise to produce the n-view posture vector,
where n denotes the number of views used in training and
recognition procedures. In our case, n = ) = 8.

Fig. 5. An eight-view posture frame of action walk. The first posture frame
corresponds to the frontal view and the order is clock-wise.

C. Action Representation

In the training phase the n-view posture vectors of the
training sequences are clustered to a fixed number of classes

using a fuzzy c-means (FCM) algorithm [17]. This procedure
considers unlabeled data and is based on the minimization of
the following objective function:
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where, N, C' are the number of samples and class centers
respectively, x; is the ¢-th sample in the training set, V =
[vj.c] = [V1,..., V]| is the matrix of class centers, ® = [¢ ;]
is the membership matrix with ¢., € [0,1] being the degree
by which the i-th sample belongs to the c-th class, m > 1 is
the fuzzification parameter and || - ||2 denotes the Euclidean
vector norm.

The resulting cluster centers correspond to dyneme vectors
used in subsequent stages. Each dyneme can be thought of
as the average of similarly looking body postures. Since no
labeling information is used, resulting dynemes can represent
movement postures appearing in more than one movements.

After the computation of the dyneme vectors, every posture
vector is expressed through its membership vector. This vector
denotes the relationship between a posture and the various
dynemes.
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Finally, every image sequence depicting a single movement
is represented with its mean membership vector evaluated over
all frames:
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where gby) is the j-th membership vector of sequence r
and L, is the number of posture frames that correspond to
the r-th image sequence. Mean membership vectors are called
movement vectors.

In order to discriminate movement classes, labeling in-
formation available in the training phase is exploited. A
linear discriminant analysis (LDA) algorithm [18] is used to
project movement vectors in a discriminant subspace. This
projection, represented through the projection matrix Jrpa,
must maximize the criterion:
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where the matrix G represents a linear transformation, S,,
and S, are the within and between class scatter matrices
respectively, p is the mean movement vector of the entire



training set, ©(®) is the mean movement vector of class ¢
and N, the number of samples in class c. Movement vectors
of the various image sequences are projected with LDA and
the average of projected movement vectors of all sequences
depicting the same movement (e.g. all walking sequences) is
computed to represent this movement class.
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where Z,. is the vector representing class r, L, is the num-
ber of samples (image sequences) of class r and p; is the
movement vectors projected in LDA subspace.

D. Movement Recognition

In the recognition phase, binary masks of n single-view
image sequences depicting a subject performing one move-
ment are rearranged/ordered in each time instance according
to the procedure described in Section II-A. The frames are
also centered with respect to the center of mass of the depicted
binary body masks and rescaled to produce single-view posture
frames. Ordered single-view posture frames create n-view
posture frames which are then vectorized to produce posture
vectors. These are expressed in the dyneme space constructed
in the training phase by the computation of membership
vectors and subsequently projected to the discriminant sub-
space that resulted by the application of LDA in the training
phase. Finally, Euclidean or Mahalanobis distances between
the unknown (to be classified) projected movement vector x
and all class vectors Z, are calculated:

d(x,Z,) = x = Z; ||2 (®)

These distances are ordered and the unknown movement is
classified to the nearest class.

III. EXPERIMENTAL RESULTS

To evaluate the performance of proposed method we tested
it to an eight-view video database consisting of eight subjects
performing eight everyday movements (walk (wk), run (rn),
jump in place (jp), jump forward (jf), bend (bd), sit (st), fall
down (fl) and wave one hand (wo)). The video capture took
place at the Visual Media Laboratory of the University of
Surrey. The capture volume dimensions were approximately
4 x 3 x 2 cubic meters. Additional details can be found in
[19].

Camera correspondence problem was solved through the
procedure described in Section II.A. Single-view binary masks
were extracted by thresholding on the blue color using the
HSV color space. Those masks were further processed to
produce binary posture frames with size of 64 x 64 pixels
and then were combined to create multi-view posture frames.

The leave-one-out cross-validation (LOOVC) procedure was
used to test the performance of the proposed method. In
every run seven subjects were used for training and one for
testing. This procedure was repeated eight times, one for
every subject. Videos were manually segmented in smaller

temporal segments, each one consisting of a single movement
period, e.g., one walk cycle. Thirty five dyneme vectors,
and a fuzzification parameter equal to 1.1 were utilized. The
confusion matrices of this experiment are shown in Tables I
and II for Euclidean and Mahalanobis distances respectively.
Opverall correct classification rates of 89.88% for Mahalanobis
and 90.88% for Euclidean distances evaluated by averaging all
the per class correct classification rate were attained. It can be
seen that the only movements that resulted in quite significant
recognition errors were jump in place and wave one hand,
whereas other movements were perfectly or almost perfectly
recognized.

wk | m | jp | jf | bd | st]| fl | wo
wk | 18
m 1 18
ip 43 | 2
if 20 1
bd 8
st 2 6
fl 8
WO 2 4 5 29

TABLE I
Confusion matrix for eight movements using Euclidean distance. A row
represents the actual movement and a column the movement recognized by
the algorithm.

wk | m | jp | jf | bd|st]| fl | wo
wk | 18
m 1 17 1
ip 38 1 8 1
if 1 19 1
bd 8
st 2 6
fl 8
WO 6 34

TABLE II
Confusion matrix for eight movements using Mahalanobis distance. A row
represents the actual movement and a column the movement recognized by
the algorithm.

IV. CONCLUSION

In this paper we presented a view-invariant human move-
ment recognition method that exploits information captured
by a multi-view camera setup. The correspondence problem
is solved using morphological operations and anthropometric
ratios. Multi-view representation of movement is achieved
by concatenating ordered binary masks extracted from every
available view, whereas recognition process involves FVQ and
LDA. The usage of a low dimensional feature representation
reduces the computational cost. Experiments show that this
technique performs action recognition with sufficiently good
correct classification rate.
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