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Abstract. In this paper a novel view-invariant human identification
method is presented. A multi-camera setup is used to capture the hu-
man body from different observation angles. Binary body masks from all
the cameras are concatenated to produce the so-called multi-view binary
masks. These masks are rescaled and vectorized to create feature vectors
in the input space. A view-invariant human body representation is ob-
tained by exploiting the circular shift invariance property of the Discrete
Fourier Transform (DFT). Fuzzy vector quantization (FVQ) is performed
to associate human body representation with movement representations
and linear discriminant analysis (LDA) is used to map movements in
a low dimensionality discriminant feature space. Two human identifica-
tion schemes, a movement-specific and a movement-independent one, are
evaluated. Experimental results show that the method can achieve very
satisfactory identification rates. Furthermore, the use of more than one
movement types increases the identification rates.

Keywords: View-invariant Human Identification, Fuzzy Vector Quantization,
Linear Discriminant Analysis.

1 Introduction

Human identification from video streams is an important task in a wide range
of applications. The majority of methods proposed in the literature approach
this issue using face recognition techniques [6], [11], [1], [12], [8]. This is a rea-
sonalbe approach, as it is assumed that human facial features do not change in
significantly small time periods. One disadvantage of this approach is the sen-
sitivity to the deliberate distortion of facial features, for example by using a
mask. Another approach, for the human identification task is the use of human
motion information [9], [7], [5]. That is, the identity (ID) of a human can be
discovered by learning his/her style in performing specific movements. Most of
the methods that identify human’s ID using motion characteristics exploit the
information captured by a single-static camera. Most of these methods assume
the same viewing angle in training and recognition phases which is obviously a
significant constraint.



In this paper we exploit the information provided by a multi-camera setup
in order to perform view-invariant human identification exploiting movement
style information. We use different movement types in order to exploit the dis-
crimination capability of different movement patterns. A movement-independent
and a movement-specific human identification scheme are assessed, while a sim-
ple procedure that combines identification results provided by these schemes for
different movement types is used in order to increase the identification rates.

The remainder of this paper is organized as follow. In Section 2, we present
the two human identification schemes proposed in this work. In Section 3, we
present experiments conducted in order to evaluate the proposed method. Fi-
nally, conclusions are drawn in Section 4.

2 Proposed Method

The proposed method is based on a movement recognition method that we pre-
sented in [4]. This method has been extended in order to perform human iden-
tification. Movements are described by a number of consecutive human body
postures, i.e., binary masks that depict the body in white and the background
in black. A converging multi-camera setup is exploited in order to capture the
human body from various viewing angles. By combining the single-view postures
properly a view-invariant human posture representation is achieved. This leads
to a view invariant movement recognition and human identification method. By
taking into account more than one movement types we can increase the iden-
tification rates, as is shown in Subsection 3.3. In the remaining of this paper
the term movement will denote an elementary movement. That is, a movement
will correspond to one period of a simple action, e.g., a step within a walking
sequence. The term movement video will correspond to a video segment that
depicts a movement, while the term multi-view movement video will correspond
to a movement video captured by multiple cameras.

2.1 Preprocessing

Movements are described by consecutive human body postures captured by var-
ious viewing angles. Each of the Ntm , m = 1, ...,M (M being the number of
movement classes) single-view binary masks comprising a movement video, is
centered to the human body center of mass. Image regions, of size equal to the
maximum bounding box that encloses the human body in the movement video,
are extracted and rescaled to a fixed size (Nx × Ny) images, which are subse-
quently vectorized column-wise in order to produce single-view posture vectors
pjc ∈ RNp , Np = Nx ×Ny, where j is the posture vector’s index, j = 1, ..., Ntm

and c is the index of the camera it is captured from c = 1, ..., C. Five single-view
posture frames are illustrated in Figure 1.



Fig. 1. Five single-view posture frames.

2.2 Training Phase

Let U be an annotated movement video database, containing NT C-view training
movement videos of M movement classes performed by H humans. Each multi-
view movement video is described by its C × Ntm single-view posture vectors
pijc, i = 1, ..., NT , j = 1, ..., Ntm , c = 1, ..., C. Single-view posture vectors that
depict the same movement instance from different viewing angles are manually
concatenated in order to produce multi-view posture vectors, pij ∈ RN)P , NP =
Nx ×Ny × C, i = 1, ..., NT , j = 1, ..., Ntm . A multi-view posture frame is shown
in Figure 2.

Fig. 2. One eight-view posture frame from a walking sequence.

To obtain a view-invariant posture representation the following observation
is used: all the C possible camera configurations can be obtained by apply-
ing a block circular shifting procedure on the multi-view posture vectors. This
is because each such vector consists of blocks, each block corresponding to a
single-view posture vector. A convenient, view-invariant, posture representation
is the multi-view DFT posture representation. This is because the magnitudes
of the DFT coefficients are invariant to block circular shifting. To obtain such
a representation, each multi-view posture vector pij is mapped to a vector Pij

that contains the magnitudes of its DFT coefficients.

Pij(k) = |
NP−1∑
n=0

p(n)e
−i 2πk

NP
n|, k = 1, ..., NP − 1. (1)

Multi-view posture prototypes vd ∈ RNP , d = 1, ..., ND, called dynemes, are
calculated using a K-Means clustering algorithm [10] without using the label-
ing information available in the training phase. Fuzzy distances from all the
multi-view posture vectors Pij to all the dynemes vd are calculated and the
membership vectors uij ∈ RND , i = 1, ..., NT , j = 1, ..., Ntm , d = 1, ..., ND, are
obtained:

uij =
(‖ Pij − vd ‖2)−

2
m−1∑ND

d=1 (‖ Pij − vd ‖2)−
2

m−1

. (2)



where m > 1 is the fuzzification parameter and is set equal to 1.1 in all the
experiments presented in this paper.

The mean membership vector si = 1
Ntm

∑Ntm
i=1 uij , si ∈ RND , i = 1, ..., NT , is

used to represent the movement video in the dyneme space and is noted as move-
ment vector. Using the known labeling information of the training movement
vectors LDA [2] is used to map the movement vectors in an optimal discrimi-
nant subspace by calculating an appropriate projection matrix W. Discriminant
movement vectors, zi ∈ RM−1, i = 1, ..., NT , are obtained by:

zi = WT si. (3)

2.3 Classification Phase

In the classification phase single-view posture vectors consisting single-view
movement videos are arranged using the camera labeling information and the
multi-view posture pj vector is mapped to its DFT equivalent Pj , as in the train-
ing phase. Membership vectors uj ∈ RND , j = 1, ..., Ntm are calculated and the
mean vector s ∈ RND represents this multi-view movement video in the dyneme
space. The discriminant movement vector z ∈ RM−1 is obtained by mapping s
in the LDA space. In that space, the multi-view movement video is classified to
the nearest class centroid.

2.4 Human Identification

As previously mentioned, the movement videos of the database U are labeled
with movement class and human identity information. Thus, a classification
scheme can be trained and subsequently used in order to provide the ID of
a human depicted in an unlabeled movement video that depicts one of the H
known humans in the database performing one of the M known movements.

In this paper we examine two classification procedures in order to achieve this.
In the first one, we apply the procedure described above using one classification
step. That is, the labeling information exploited by the classification procedure
is that of the humans’ IDs. Each multi-view movement video in the training
database is annotated by the ID of the depicted human. Using this approach a
movement-independent human identification scheme is devised. A block diagram
of the classification procedure applied in this case is shown in Figure 3.

The second procedure consists of two classification phases. In the first phase,
the multi-view movement video is classified to one of the M known move-
ment classes. The movement classifier utilized in this phase is trained using
the movement class labels that accompany the videos. Subsequently, the use of
a movement-specific human identification classifier provides the ID of the de-
picted human. More specifically M human identification classifiers are used in
this phase. Each of them is trained to identify humans using videos of a specific
movement class. Human ID labels are used for the training of these classifiers.
A block diagram of the classification procedure applied in this case is shown in
Figure 4.



Fig. 3. Movement-independent human identification procedure.

2.5 Fusion

Video segments that depict single movement periods are rare. In most real-world
videos a human performs more than one movement periods of the same or differ-
ent movement types. In the case where a movement video depicts Ns movement
periods, of probably different movement classes, the procedures described above
will provide Ns identification results. By combining these results, the human ID
correct identification rates increase. A simple majority voting procedure can be
used for this procedure. That is the ID of the human depicted in a video segment
is set to that of the mostly recognized human.

3 Experimental Results

In this section we present experimental results in the i3DPost multi-view video
database described in [3]. This database contains high definition image sequences
depicting eight humans, six males and two females, performing eight movements,
walk, run, jump in place, jump forward, bend, sit, fall and wave one hand. Eight
cameras were equally spaced in a ring of 8m diameter at a height of 2m above the
studio floor. The studio background was uniform. Single-view binary masks were
obtained by discarding the background color in the HSV color space. Movements
that contain more than one periods were used in the following experiments. That
is movements walk (wk), run (rn), jump in place (jp), jump forward (jf) and wave
one hand (wo) were used, while movements bend (bd), sit (st) and fall (fl) were
not used as each human performs the movement once For each movement class



Fig. 4. Movement-specific human identification procedure.

four movement videos were used in order to perform a four-fold cross-validation
procedure in all the experiments presented.

3.1 Movement-independent human identification

In this experiment we applied the procedure illustrated in Figure 3. In this case
the multi-view training movement videos were labeled with human ID informa-
tion. At every step 40 multi-view movement videos, one of each movement class
(5 classes) depicting each human (8 humans), were use for testing and the re-
maining 120 multi-view movement videos were used for training. This procedure
was applied four times, one for each movement video set. A 82.5% identifica-
tion rate was obtained using 70 dynemes. The corresponding confusion matrix
is presented in Table 1. As it can be seen, some of the humans are confused with
others.



Table 1. Confusion matrix containing identification rates in the movement-
independent case on the I3DPost database.

chr hai han jea joe joh nat nik

chr 0.95 0.05

hai 0.85 0.05 0.05 0.05

han 0.1 0.5 0.15 0.05 0.15 0.05

jea 0.05 0.9 0.05

joe 1

joh 0.05 0.85 0.05 0.05

nat 0.1 0.05 0.1 0.05 0.65 0.05

nik 0.1 0.9

3.2 Movement-specific human identification

In order to assess the discrimination ability of each movement type in the human
identification task we applied five human identification procedures, each corre-
sponding to one of the movement type. For example, in the case of movement
walk, three multi-view movement videos depicting each of the eight humans
walking were used for training and the fourth multi-view movement video de-
picting him/her walking was used for testing. This procedure was applied four
times, one for each movement video. Identification rates provided for each of the
movement types are illustrated in Table 2. As it can be seen, all the movement
types provide high identification rates. Thus, such an approach can be used in
order to obtain the identity of different humans in an efficient way.

Table 2. Identification rates of different movement classes.

Movement Dynemes Identification Rate

wk 14 0.90

rn 29 0.90

jp 18 1

jf 21 0.93

wo 17 0.96

In a second experiment, we applied the procedure illustrated in Figure 4.
That is, the multi-view movement videos were firstly classified to one of the M
movement classes and were subsequently fed to the corresponding movement-
specific classifier provided that the human’s ID. An identification rate equal
to 94.37% was achieved. The optimal number of dynemes, for the movement
recognition classifier was equal to 25. The optimal number of dynemes for the
movement-specific classifiers were 14, 29, 18, 21 and 17 for movements wk, rn,
jp, jf and wo, respectively. Table 3 illustrates the confusion matrix of the optimal
case. As it can be seen, most of the multi-view videos were assigned correctly



to the person they depicted. Thus, the movement-specific human identification
approach is more effective than the movement-independent approach.

Table 3. Confusion matrix containing identification rates in the movement-specific
case on the I3DPost database.

chr hai han jea joe joh nat nik

chr 1

hai 0.9 0.05 0.05

han 0.85 0.05 0.1

jea 1

joe 1

joh 0.95 0.05

nat 0.05 0.95

nik 0.05 0.05 0.9

3.3 Combining IDs of different movement types

In this experiment we combined the identification results provided the movement-
independent and the movement-specific classification schemes (Figures 3 and 4).
At every step 40 multi-view movement videos, each depicting one human per-
forming one movement, were used for testing and the remaining 120 multi-view
movement videos were used for training. In the movement-independent identi-
fication procedure, training multi-view movement videos were labeled with the
human ID information, while in the movement-specific identification procedure
the training multi-view movement videos were labeled with the movement and
the human ID information. At every fold of the cross-validation procedure, the
test multi-view movement videos of each humans of the database were fed to
the classifier and a majority voting procedure was applied to the identification
results in order to provide the final ID. Using this procedure identification rates
equal to 90.62% and 96.87% were achieved for the movement-independent and
movement-specific classification procedures, respectively. Tables 4 and 5 illus-
trate the confusion matrices of these experiments. As can be seen, a simple
majority voting procedure increases the identification rates. This approach can
be applied to real videos, where more than one action periods are performed.

4 Conclusion

In this paper we presented a view-invariant human identification method that
exploits information captured by a multi-camera setup. A view-invariant human
body representation is achieved by concatenating the single-view postures and
computing the DFT equivalent posture representation. FVQ and LDA provides
a generic classifier which is subsequently used in a movement-independent and



Table 4. Confusion matrix containing identification rates in the movement-
independent case on the I3DPost database using a majority voting procedure.

chr hai han jea joe joh nat nik

chr 1

hai 0.75 0.25

han 0.75 0.25

jea 1

joe 1

joh 1

nat 0.25 0.75

nik 1

Table 5. Confusion matrix containing identification rates in the movement-specific
case on the I3DPost database using a majority voting procedure.

chr hai han jea joe joh nat nik

chr 1

hai 1

han 0.75 0.25

jea 1

joe 1

joh 1

nat 1

nik 1

a movement-specific human identification scheme. The movement-specific case
seem to outperform the movement-independent one. The combination of identi-
fication results provided for different movement types increases the identification
rates in both cases.
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