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ABSTRACT 

Face detection is a key problem in building systems that perform 
face recognitiodverification and model-based image coding. Two 
algorithms for face detection that employ either support vector ma- 
chines or back-propagation feed-forward neural networks are de- 
scribed, and their performance is tested on the same frontal face 
database using the false acceptance and false rejection rates as 
quantitative figures of merit. The aforementioned algorithms can 
replace the explicitly-defined knowledge for facial regions and fa- 
cial features in mosaic-based face detection algorithms. 

1. INTRODUCTION 

Face detection has been an active research topic in computer vision 
for more than two decades. Many approaches have been proposed 
for face detection in still images that are based on either texture, 
depth, shape and color information, or a combination of them. A 
comprehensive survey on face detection methods can be found in 
[I]. A probabilistic method based on density estimation in a high 
dimensional space using an eigenspace decomposition is proposed 
in [ 2 ] .  A closely related work is the example-based approach in [3] 
for locating vertically oriented and unoccluded frontal face views 
at different scales using a number of Gaussian clusters to model 
the distributions of face and non-face patterns. A mixture of linear 
subspaces has been used to model the latter distributions in [4]. An 
ensemble of neural networks trained to detect portions of the input 
image and arbitrating the results is presented in [5]. The applica- 
tion of support vector machines (SVM) in frontal face detection in 
images was first proposted in [6,7] .  

In this paper we build on the face detection algorithm proposed 
in [8] that is based on multiresolution images (also known as mo- 
saic images). The algorithm attempts to detect a facial region at 
a coarse resolution and subsequently to validate the outcome by 
detecting facial features at the next resolution using a hierarchi- 
cal knowledge-based pattern recognition system. A variant of this 
method has been proposed in [9] that allows for rectangular cells 
instead of square cells and provides estimates of the cell dimen- 
sions and the offsets so that the mosaic model fits the face image 
of a person by preprocessing the horizontal and the vertical profile 
of the image. The original algorithm [8] is based on images of re- 
duced resolution that attempt to capture the macroscopic features 
of the human face. It Y S  assumed that there is a resolution level 
where the main part of the face occupies an area of about 4 x 4 
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cells. Accordingly, a mosaic image, the so called quartet image 
is created for this resolution level. The grey level of each cell is 
equal to the average value of the grey levels of all pixels included 
in the cell. We propose to replace any “hardwired” rule for either 
face image region or facial feature properties by employing a gen- 
eral purpose pattern recognition algorithm to discriminate among 
face and non-face patterns. Such patterns are created by ordering 
lexicographically the grey levels of the quartet image cells that fall 
inside a window scanning the quartet image. 

Alternatively, one may use the horizontal and vertical image 
profiles in order to extract a bounding box for the face region, as 
has been demonstrated in [9]. The horizontal profile of the image 
is obtained by averaging all pixel intensities in each image column. 
Similarly, the vertical profile of the image is obtained by averaging 
all pixel intensities in each image row. Instead of locating the ex- 
trema of the aforementioned profiles and defining rules that assign 
them to facial features, we propose to create patterns by scanning 
the horizontal and the vertical image profile with a running win- 
dow. 

Two supervised pattern recognition algorithms are tested in 
this paper. First, an SVM is trained to separate face and non-face 
patterns extracted from the quartet image. Second, an ensemble 
of feed-forward neural networks trained by the back-propagation 
algorithm processes the horizontal profile aiming at separating pat- 
terns that fall in the interval between the cheeks from the remaining 
patterns. Similarly another ensemble of feed-forward neural net- 
works processes the vertical profile aiming at separating patterns 
that fall between the eyebrows and the chin from others. 

The outline of the paper is as follows. The SVM face detection 
algorithm is described in Section 2. The back-propagation neural 
network approach is presented in Section 3. Experimental results 
are reported in Section 4 and conclusions are drawn in Section 5. 

2. SUPPORT VECTOR MACHINE APPROACH 

A two-dimensional rectangular window is defined that consists of 
5 cells in horizontal and 6 cells in vertical dimension. The window 
scans the quartet image whose cell intensities have been normal- 
ized to the interval [0,1]. Between two successive movements, the 
windows are half overlapping. By moving the window over the 
quartet image, several 30-dimensional patterns are obtained that 
enable the description of faces appearing at different locations in 
the image. By varying the cell size, we enable the description of 
faces at different scales. To avoid the manual assignment of a class 
label to each feature vector, an empirical approach is used that ex- 
ploits the face detection outcome provided by the method in [9]. 

Let xi, i = 1,2, . . . , 1 denote the ith training pattern and ti the 



class label assigned to it that takes the values & l .  An SVM [12] is 
built to solve the following quadratic programming problem with 
linear equality and inequality constrains related to the so-called 
sofz margin hyperplane [6] :  

E 1 rl;=T 
F ( X , T )  = ~ ~ 1 -  - X ~ D X  - ___ 

2 ( k C ) h  
maximize 

subjectto XTt = 0 ,  X 5 r l ,  and X 2 0 (1) 

where 1 is ( 1  x 1) vector of ones, 0 is ( 1  x 1) vector of zeros, 
X = ( A I ,  Az,  ...,  AI)^ is the vector of Lagrange multipliers, D is 
an 1 x 1 matrix whose ij-element is given by Dij = tttj  (xyxj), 
t = ( t l ,  t z ,  . . . , and I C ,  T,  C are control parameters that pe- 
nalize the violations of the linearly separable constraints after the 
introduction of slack variables. For a test training pattern x, the 
decision function implemented by the SVM is: 

y = f(x) = sign t ,  A: ( x ~ x , )  + b' ] [$ ( 2 )  

where A; are the solutions of the optimization problem (1) that 
satisfy 0 < X i  < C and whose associated patterns, xi, are the 
so-called support vccfors. The bias term is given by b' = ti - 
( w * ) ~  xi, for any support vector xi, where w* is given by: 

1 

w* =):x;t,xi. (3)  
i=l 

If the input patterns are mapped to a higher dimensional feature 
space through some non-linear mapping, the inner products in the 
feature space can be computed by a positive definite kernel func- 
tion K(x, xi) [12]. To implement the above described algorithm, 
the SVM' ightT~~Zboz  [l I] has been used. 

To model efficiently the non-face class in the training phase, 
we have used bootstrapping, as is proposed in [3]. For non-face 
patterns, any instance of the window in the background or in any 
other image not containing any faces can constitute a non-face ex- 
ample. However, all these non-face patterns are not equally useful 
in modeling the non-face distribution. We used bootstrapping in 
order to select the non-face patterns that are close to face class 
boundaries [3, 6 ,  51. That is, initially, the system is trained with a 
small number of face and non-face patterns and then it is tested on 
unknown images. The number of non-face patterns that are falsely 
detected as faces are inserted into the training set as negative ex- 
amples. 

3. NEURAL NETWORK APPROACH 

Let zq(n) denote the q-th element of the n-th image profile. For 
several randomly selected instances n of either the image profile 
of the same person or instances of images profiles of other persons 
a training set is built that is comprised of the following patterns: 

x(n; i )  = (-1,z1(n; i ) , z z (n;  i ) ,  . . . ,xZ,M+l(R; i ) ) T  

( -1 ,22- ,~(n) ,z i - ,M+l(n) ,  . . . ,%(TI), . . . , 
z2+,\4-1(n), z i + M ( n ) ) T .  (4) 

- - 

An ensemble of multilayer perceptrons is created where each net- 
work is fed with patterns of the form (4). Each multilayer percep- 
tron Ni is trained with the classical back-propagation algorithm 

[13]. Let m = 0 ,1 ,2  denote the layers of the neural network. 
Let also wiY)(n; i )  be the synaptic weight of neuron k in layer 
m that is fed from neuron j in layer m - 1. For j = 0, we 
have yI;"-l)(n; i )  = -1 and wiy)(n; i )  = Oim)(n; i ) ,  where 
= Oim)(n; i )  is the threshold applied to neuron k in layer m. The 
net internal activity level vim)(n; i) of neuron k in layer m is 
given by: 

2M+1 

v i y n ;  2 )  = ): w p ( n ;  i )  y y - y n ;  i )  ( 5 )  
j=O 

with 

y;O)(n; i )  = zj(n; i ) ,  j = 1 , 2 , .  . . , 2 M  + 1. (6)  
The output signal of neuron k in layer m is: 

(7) 

where p = 1.5 or 2.5 for horizontal and vertical profiles, respec- 
tively. For the output neuron processing the pattern x(n; i ) ,  we 
define o(n; i )  = yi2)(n; i ) .  The error signal at the a-th element 
of the image profile is e(n;  i )  = t (n;  i )  - o(n;  i), where t(n; i )  
is the desired response for the i-th element. The synaptic weights 
of the network in layer m are updated according to the generalized 
delta rule: 

I yL"'(n; 2 )  = 
1 + exp ( -p vim)(n; i ) )  

w i y ' ( n  + 1; 2 )  = wiy)(n; 2 )  + (Y [ w p ( n ;  2 )  

-wiY)(n - 1; i ) ]  + q6im)(n; i)y;"-')(n; i )  (8) 
where a is the momentum constant, 17 is the learning rate, and 6's 
are the local gradients. For output neurons (Le., k = 1 and m = 2) 
we have: 

P ) ( n ;  i )  = e ( ' ) (n ;  i )  o(n; i )  [I - o(n; i ) ]  (9) 
while for neuron k in hidden layer m: 

si")(n; i )  = yp"'n; i )  [1 - y?y)(n ;  i ) ]  

.C61;"+')(n; i)w$+')(n;  i ) .  (10) 
P 

Both horizontal and vertical image profiles undergo a certain pre- 
processing before being fed to the network. First of all, they are 
smoothed by applying a running maximum filter of length 5 twice, 
so that the maxima become more prominent. Then, for each pat- 
tern x(n; i )  the desired response or ground truth, t(n; i )  € { 1, 0) .  
is coded considering whether the i-th element (i.e., a row index or 
column index) belongs to the face region or not. We consider as 
face region the area from the chin to the forehead in the vertical 
direction, and from the left to the right cheek in the horizontal po- 
sition. It is seen that the desired signal is a square wave signal with 
abrupt transitions. A branch of a Gaussian function is fit in each 
transition region so that a more smooth transition is provided to 
the neural network. Moreover, we can augment the image profiles 
extracted from the frontal face images of the database with "syn- 
thetic" ones that are produced by adding Gaussian noise of zero 
mean and unit variance to the original image profiles. The synaptic 
weights have been initializedrandomly in the interval [-1.5,1.5]. 
The constants a and 17 are set to 0.9 each. As stopping criterion, we 
have used the condition the average mean squared error between 
the output of each neural network and the desired target becomes 
less than 0.07. 
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4. EXPIERIMENTAL RESULTS 

Set 

2 

The proposed algorithms have been applied to the European ACTS 
project M2VTS database [IO]. The database includes the video- 
sequences of 37 differeni. persons in four different shots. A training 
set is built fromfrontal face images of the 37 persons in three shots. 
The algorithms are trained on this set. Frontal face images of the 
37 persons from the fourth shot are used as test images. Rotations 
between the four available shots by leaving one shot out are also 
tested. 

Two quantitative figures of merit have been used in the assess- 
ment of the performance of each algorithm, namely, thefalse ac- 
ceptance rate (FAR) and thefalse rejection rate (FRR) during the 
test phase. The false acceptance rate is the ratio of non-face ex- 
amples that have been wrongly classified as faces, while the false 
rejection rate is the ratio of face examples that have been rejected 
as non-faces. Receiver operating characteristic (ROC) curves (i.e., 
plots of FRR versus FAR) for a detection algorithm are provided 
whenever a tunable parameter (e.g., a threshold) is employed in 
decision taking procedure. 

4.1. SVM-based face detection 

The pattern extraction algorithm yields roughly I - -10 face pat- 
terns when each frontal face image is processed at several quartet 
cell resolutions. Accordingly, for each shot 200 face patterns re- 
sult on average. When three shots are considered, a training set 
of 600 face patterns is fcirmed. The following kernels have been 
employed during the training phase: ( 1 )  Linear with C = 1000; 
(2) Polynomial K ( x , + )  = ( s x T +  + c ) ~  with s = c = 1, 
d = 3 , 4 , 5  and 10; (3) Radial Basis Function (RBF) K ( x ,  +) = 
exp(-yllX - +[Iz) with c = 1 and y = 1 and 5; (4) Sigmoidal 
K ( x ,  +) = tanh(s xT$i+c)  with c = 1 and s = 0.005. Table 1 
summarizes the FAR and FRR obtained for all the kernels and the 
four combinations of tesi and training sets. Bootstrapping tech- 

Bootstrapping Bootstrapping 
FAR I FRR 
5.0 1 5.0 1.0 I 4.0 

FAR I FRR 

Table 1. False acceptance and false rejection rates for several ker- 
nels and test sets. 

Test 
Set 

4 

Kernel 

Linear 
Polynomial (d=3) 
Polynomial (d=5) / RBF (y=l) 
RBF (7=5) 1.11 I Sigmoidal I ;:I.; 
Linear / Polvnomial (d=3) 1 ~ o ~ y n o m i a ~ i d = f i )  . ’ 1 ~3 
RBF(y=I)  
RBF (y=5) 
Linear 
Polynomial (d=3,5) 
RBF (y=l) 
RBF (y=5) 
Linear / Polynomial (d=3,5) 1 3 8  

1 RBF(.g=l) 3.77 
RBF (g=S) 2.83 

- 
FRR 
70 
6.66 
4.44 
0 
0 
2.2 
1.21 
5.81 
2.40 
3.61 
5 
8 
5 
0 
I .E8 
1.88 
0.94 __ 

niques are employed in SVMs with linear and polynomial kernel 
functions with d = 5. The corresponding rates obtained with and 
without bootstrapping are tabulated in Table 2. 

Table 2. False acceptance and false rejection rates (in %) achieved 
by linear SVMs with and without bootstrapping. 

I Test 11 Without With 

4.2. Back-propagation neural network-based face detection 

Experimental results are reported when the fourth shot is used as a 
test set. The neural network output is a signal taking values in the 
interval [0,1]. To quantize the output as either 0 or 1 a threshold T 
is employed, so that when the output is greater than the threshold, 
the binary output is 1 (i.e., face pattern) and zero otherwise. Tests 
have been performed for T taking values in the range [0.3,0.9]. In 
this case, the FAR and FRR values depend on the implicit param- 
eter T .  Accordingly, we may create ROC curves. The ROC curve 
when face detection is performed on the horizontal profiles only 
is depicted in Fig. 1. The corresponding curve, when the vertical 

FA 

Fig. 1. Receiver Operating Characteristic curve when the horizon- 
tal image profiles are only considered. 

profiles are only used, is shown in Fig. 2. The equal error rate 

Fig. 2. Receiver Operating Characteristic curve when the vertical 
image profiles are only considered. 

(EER) is 5.01% for the ROC of Fig. 1 and 5.95 % for the ROC 
of Fig. 2. Decisions taken on either the horizontal or the vertical 
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profile independently can be combined using “ A N D  and “OR’ 
rules. The false acceptance and false rejection rates are then given 
by 1141 

F A A N D  = f a i f a z  (11) 
F R A N D  = f r l  + f r z  - f T 1 f I - z  (12) 

FAOR = fa1  + f a 2  - f a l f a z  (13) 
FROR = f r l f r z  (14) 

where fa1 and f r l  are the FAR and FRR measured on the hori- 
zontal profile and f a2 and f T Z  are the FAR and FRR measured on 
the vertical. The resulting ROC curves are plotted in Figs. 3-4. It 

0 9 ,  , , , , , , , , , , 

P” 

Fig. 3. Receiver Operating Characteristic curve when decisions 
taken independently on the horizontal and vertical image profiles 
are combined with an “AND” rule. 

H 

Fig. 4. Receiver Operating Characteristic curve when decisions 
taken independently on the horizontal and vertical image profiles 
are combined with an “OR’ rule. 

can be seen that for FAR zz 1.1% SVMs with polynomial kernel 
offer an FRR= 4.4%. The FRR drops to 2.2% when a sigmoidal 
kernel is used and becomes zero for an RBF kernel with y = 5. 
The combination of decisions taken by multilayer perceptrons on 
horizontal and vertical profiles with the AND rule gives an FRR of 
3.33% at the same FAR. 

5. CONCLUSIONS 

In this paper, two methods for detecting faces in frontal views 
have been described and their performance has been thoroughly 

measured with respect to the false acceptance and false rejection 
rates. Both techniques are example-based, attain a comparable per- 
formance, and offer great flexibility in contrast to the knowledge- 
based approaches. They can replace the explicitly-defined knowl- 
edge for facial regions and facial features in mosaic-based face 
detection algorithms. 

6. REFERENCES 

M.-H. Yang, N. Ahuja, and D. Kriegman, “A survey on face 
detection methods,” IEEE Trans. on Pattern Analysis and 
Machine Intelligence, to appear 2001. 
B. Moghaddam and A. Pentland, “Probabilistic visual learn- 
ing for object recognition,” IEEE Trans. on Pattern Analysis 
and Machine Intelligence, vol. 19, no. 7, pp. 696-710, July 
1997. 
K.-K. Sung and T. Poggio, “Example-based learning for 
view-based human face detection,” IEEE Trans. on Pattern 
Analysis and Machine Intelligence, vol. 20, no. 1, pp. 39-5 1, 
January 1998. 
M.-H. Yang, N. Ahuja, and D. Kriegman, “Face detection 
using a mixture of factor analyzers,” in Proc. of the 1999 
IEEE Int. Con$ on Image Processing, vol. 3, pp. 612-616, 
1999. 
H.A. Rowley, S. Baluja, and T. Kanade, “Neural network- 
based face detection,” IEEE Trans. on Pattern Analysis and 
Machine Intelligence, vol. 20, no. 1, pp. 23-37, January 
1998. 
E. Osuna, R. Freund, and F. Girosi, “Training support vector 
machines: An application to face detection,” in Proc. IEEE 
Computer Society Con$ Computer Vision and Pattern Recog- 
nition, pp. 130-136, 1997. 
C. Papageorgiou, M. Oren, and F. Girosi, “A general frame- 
work for object detection,” in Proc. Fifth Int. Conf on Com- 
puter Vision, pp. 555-562, 1998. 
G. Yang and T.S. Huang, “Human face detection in a com- 
plex background,” Pattern Recognition, vol. 27, no. 1, pp. 
53-63, 1994. 
C. Kotropoulos and 1. Pitas, “Rule-based face detection in 
frontal views,” in Proc. of the 1997 IEEE Int. Con$ on Acous- 
tics, Speech, and Signal Processing, pp. 2537-2540, 1997. 
S .  Pigeon and L. Vandendorpe, “The M2VTS multimodal 
face database,” in Lecture Notes in Computer Science: 
Audio- and Video- based Biometric Person Authentication (J .  
Bigun, G .  Chollet and G. Borgefors, Eds.), vol. 1206, pp. 
403-409, 1997. 
T. Joachims, “Making Large-scale SVM Learning Practi- 
cal,” in B. Scholkopf, C.J.C. Burges and A.J. Smola, Eds. 
Advances in Kernel Methods: Support Vector Learning, pp. 
41-56, Cambridge, MA: The MIT Press, 1998. 
V.N. Vapnik, The Nature of Statistical Learning Theory. New 
York: Springer Verlag, 1995. 
S .  Haykin, Neural Networks: A Comprehensive Foundation. 
Englewoods Cliffs, N.J.: Prentice Hall, 1999. 
S. Pigeon and L. Vandendorpe, “Image-based multimodal 
face authentication,” Signal Processing, vol. 69, no. 1, pp. 
59-79, 1998. 

1029 


