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Abstract—This paper presents a novel approach for combining
optical flow into enhanced 3D motion vector fields for human
action recognition. Qur approach detects motion of the actors
by computing optical flow in video data captured by a multi-
view camera setup with an arbitrary number of views. Optical
flow is estimated in each view and extended to 3D using 3D
reconstructions of the actors and pixel-to-vertex correspondences.
The resulting 3D optical flow for each view is combined into a
3D motion vector field by taking the significance of local motion
and its reliability into account. 3D Motion Context (3D-MC)
and Harmonic Motion Context (HMC) are used to represent
the extracted 3D motion vector fields efficiently and in a view-
invariant manner, while considering difference in anthropometry
of the actors and their movement style variations. The resulting
3D-MC and HMC descriptors are classified into a set of human
actions using normalized correlation, taking into account the
performing speed variations of different actors. We compare the
performance of the 3D-MC and HMC descriptors, and show
promising experimental results for the publicly available i3DPost
Multi-View Human Action Dataset.

Index Terms—human action recognition; multi-view; 3D op-
tical flow; 3D motion description

I. INTRODUCTION

In this paper we address the problem of 3D human action
recognition for multi-view camera systems. While 2D human
action recognition has received high interest during the last
decade, 3D human action recognition is still a quite unexplored
field. Relatively few authors have so far reported work on 3D
human action recognition [1], [2], [3]. We contribute to this
field by introducing a novel 3D action recognition approach
for multi-view camera systems.

Multi-View Camera Systems. A 3D representation is more
informative than the analysis of 2D activities carried out in
the image plane, which is only a projection of the actual
actions. As a result, the projection of the actions will depend
on the viewpoint, and not contain full information about the
performed activities. To overcome this shortcoming the use
of 3D data has been introduced through the use of two or
more cameras [4], [5], [6]. In this way the surface structure
or a 3D volume of the person can be reconstructed, e.g., by
Shape-From-Silhouette (SFS) techniques [7], and thereby a
more descriptive representation for action recognition can be
established.

View-Invariant Feature Description. The use of 3D data
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allows for efficient analysis of 3D human activities. However,
we are still faced with the problem that the orientation of
the subject in the 3D space should be known. Therefore,
approaches have been proposed without this assumption by
introducing view-invariant or view-independent representa-
tions. One line of work concentrates solely on the image
data acquired by multiple cameras [8], [9], [10]. In the work
of Souvenir et al. [10], where the acquired data from the
5 calibrated and synchronized cameras, used to produce the
INRIA Xmas Motion Acquisition Sequences (IXMAS) Multi-
View Human Action Dataset [6], is further projected to 64
evenly spaced virtual cameras used for training. Actions are
described in a view-invariant manner by computing R trans-
form surfaces of silhouettes and manifold learning. Gkalelis
et al. [8] exploits the circular shift invariance property of the
discrete Fourier Transform (DFT) magnitudes, and use Fuzzy
Vector Quantization (FVQ) and Linear Discriminant Analysis
(LDA) to represent and classify actions. For additional related
work on view-invariant approaches please refer to the recent
survey by Ji et al. [9].

3D Feature Descriptors. Another line of work utilize the
full reconstructed 3D data for feature extraction and descrip-
tion [11], [12], [13], [14], [15]. Johnson and Hebert proposed
the spin image [12], and Osada et al. the shape distribu-
tion [15]. Ankerst et al. introduced the shape histogram [11],
which is a similar to the 3D extended shape context [16]
presented by Kortgen et al. [14], and Kazhdan et al. applied
spherical harmonics to represent the shape histogram in a
view-invariant manner [13]. Later Huang et al. extended the
shape histogram with color information [17]. Recently, Huang
et al. made a comparison of these shape descriptors combined
with self similarities, with the shape histogram (3D shape
context) as the top performing descriptor [18].
Spatio-Temporal Descriptors. A common characteristic of
all these approaches is that they are solely based on static
features, like shape and pose description, while the most
popular and best performing 2D image descriptors apply
motion information or a combination of the two [19], [20],
[21], [22], [23]. Some authors add temporal information by
capturing the evolvement of static descriptors over time, i.e.,
shape and pose changes [4], [24], [25], [6], [26]. The common
trends are to accumulate static descriptors over time, track
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human shape or pose information, or apply sliding windows
to capture the temporal contents [1], [25], [6], [3]. Cohen et
al. [4] use 3D human body shapes and Support Vector Ma-
chines (SVM) for view-invariant identification of human body
postures. They apply a cylindrical histogram and compute an
invariant measure of the distribution of reconstructed voxels,
which later was used by Pierobon et al. [25] for human action
recognition.

The Motion History Volume (MVH) was proposed by
Weinland et al. [6], as a 3D extension of Motion History
Images (MHIs). MHVs are created by accumulating static
human postures over time in a cylindrical representation,
which is made view-invariant with respect to the vertical axis
by applying the Fourier transform in cylindrical coordinates.
Later, Weinland et al. [26] proposed a framework, where
actions are modeled using 3D occupancy grids, built from
multiple viewpoints, in an exemplar-based Hidden Markov
Models (HMM). Learned 3D exemplars are used to produce
2D image information which is compared to the observations,
hence, 3D reconstruction is not required during the recognition
phase. Recently, Huang et al. proposed 3D shape matching in
temporal sequences by time filtering and shape flows [18].
Kilner et al. [24] applied the shape histogram and evaluated
similarity measures for action matching and key-pose detection
in sports events, using 3D data available in the multi-camera
broadcast environment.
3D Motion Descriptors. To the best of our knowledge,
the only 3D descriptors which are directly based on motion
information are the 3D Motion Context (3D-MC) [27] and the
Harmonic Motion Context (HMC) [27] proposed by Holte et
al. The 3D-MC descriptor is a motion oriented 3D version

A schematic overview of the system structure and data flow pipeline of our approach.

of the shape context [16], [14], which incorporates motion
information implicitly by representing estimated 3D optical
flow by embedded Histograms of 3D Optical Flow (3D-HOF)
in a spherical histogram. The HMC descriptor is an extended
version of the 3D-MC descriptor that makes it view-invariant
by decomposing the representation into a set of spherical
harmonic basis functions.

Our Approach and Contributions. In this work we perform
3D human action recognition using video data acquired by
multi-view camera systems and reconstructed 3D mesh mod-
els. A schematic overview of our approach is illustrated in
Figure 1. The contributions of this paper are threefold: (1)
we detect motion by computing optical flow in 2D multi-
frames, and extend it to 3D flow by estimating pixel-to-
vertex correspondences. The resulting 3D optical flow for each
view is combined into 3D motion vector fields by taking the
significance of local motion and its reliability into account.
(2) We apply the 3D Motion Context (3D-MC) and the
view-invariant Harmonic Motion Context (HMC) descriptors
proposed by Holte et al. [27] to represent the extracted 3D
motion vector fields efficiently. The resulting 3D-MC and
HMC descriptors are classified into a set of human actions
using normalized correlation, which incorporates robustness to
performing speed variations of different actors. (3) In contrast
to the work reported in [27], where only limited experiments
are conducted for a small-scale human action dataset acquired
by a Time-of-Flight sensor, we evaluate our proposed approach
on the recent produced and publicly available i3DPost Multi-
View Human Action Dataset [S]. Furthermore, we compare
the performance of the 3D-MC and HMC descriptors for a
variable number of actions and camera views used for training



and testing of the system, and show promising experimental
results for both descriptors within an accuracy range of 76-
100%. To the best of our knowledge, we are the first to extract
rich 3D motion in the form of motion vector fields and apply
3D motion description for multi-view data.

Paper Structure. The remainder of the paper is organized as
follows. In section II we present our technique for multi-view
motion detection, and describe how the estimated 2D motion
is extended to 3D and combined into motion vector fields.
Section III outlines the 3D-MC and HMC 3D motion descrip-
tors, and section IV narrates the action classification applied
for action recognition. Experimental results and comparisons
are reported in section V, followed up by concluding remarks
in section VL.

II. MULTI-VIEW MOTION DETECTION

We detect motion in Multi-frames F = (I, s, ..., I,) us-
ing a 3D version of optical flow to produce velocity annotated
point clouds [28], [29], [30] (3D optical flow). Afterwards we
combine the estimated 3D optical flow for each view into a 3D
motion vector field by taking the significance of local motion
and its reliability into account (see Figure 1).

Optical Flow Estimation in Multi-Frames. Optical flow is
the pattern of apparent motion in a visual scene caused by the
relative motion between an observer and the scene. The main
benefit of optical flow compared to other motion detection
techniques, like double differencing [31], is that optical flow
determines both the amount of motion and its direction in form
of velocity vectors. The technique computes the optical flow
of each image pixel as the distribution of apparent velocity of
moving brightness patterns in an image. The flow of a constant
brightness profile can be described by the constant velocity
vector vop = (v, vy)T as outlined in Equation 1.
I(z,y,t) = I(x+d0x,y+ dy,t+dt)
I(x + vy - 0t,y + vy - 0t,t4+t) (1)
ol ol 0l
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Usually, the estimation of optical flow is based on differential
methods. They can be classified into global strategies which
attempt to minimize a global energy functional [32] and local
methods, that optimize some local energy-like expression. A
prominent local optical flow algorithm developed by Lucas
and Kanade [33], which has proven to be among the top per-
forming algorithms [34], uses the spatial intensity gradient of
an image to find matching candidates using a type of Newton-
Raphson iteration. They assume the optical flow to be constant
within a certain neighborhood, which allows to solve the
optical flow constraint equation (Equation 1) via least square
minimization. Optical flow is computed for each multi-frame
F; of a multi-view sequence of images (F1, Fo, ..., Fm) and
based on data from two consecutive multi-frames (F;, F;_1).
Each pixel of multi-frame F; is annotated with a 2D velocity
vector vap = (vg,v,)7 (see Figure 1), resulting in temporal
pixel correspondences between multi-frame F; and F;_;.
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3D Optical Flow by Pixel-to-Vertex Correspondences. For
each pixel in the multi-frames we transform the temporal pixel
correspondences into temporal 3D vertex correspondences
(p};, pj_l), which can be used to compute 3D velocities
vsp = (v, vy,v.)T = pli —p?‘l. For this purpose we use the
camera calibration data for the multi-view camera system [5],
and project the vertices p of reconstructed 3D mesh models [7]
onto the respective image planes with coordinates (u, v), using
the following set of equations:

r o= \/d%Td?ﬁ dy = fi,r@7 dy = fivypc’y
pc,z pCaZ

(u,v) = (Ci,m +dy(L+kiar), iy +dy(1+ kz‘,ﬂ"))

where R and ¢ are the camera rotation matrix and translation
vector; f, and f, are the x and y components of the focal
length f; ¢, and ¢, are the  and y components of the principal
point ¢, and k; is the coefficient of a first order distortion
model for the i camera, respectively. Since multiple vertices
might be projected onto the same image pixel, we create a
z-buffer containing the depth ordered vertices py4, and select
the vertex with the shortest distance to the respective camera.
The distance d is determined with respect to the centre of
projection o, as follows:

z-buffer =
d =

[Pd,1,Pd,2:- - - Pd,n) (3)
|p; — 0;], where o; = —RiTti

This has proven to work well for selecting the best correspond-
ing vertices in case of multiple instances. Figure 2.a and 2.d
present examples of estimated 3D optical flow. However,
some amount of noise due to erroneous reconstructed 3D data
or falsified pixel-to-vertex correspondences, resulting from
imprecise optical flow estimation, are still present in the 3D
optical flow. These corrupted velocity vectors are eliminated to
some extent by simple filtering and thresholding, and handled
in the following by the proposed multi-flow fusion scheme
combining the 3D flow computed in multi-views into one
resulting motion vector field.

Motion Vector Fields. The 3D optical flow for each view V,
is combined to a resulting 3D motion vector field V.. This
could be done by a simple averaging over the flow components
for each view V pean (see Figure 2.b and 2.e). However, instead
we weight each component by the significance of local motion
S, and the reliability of the estimated optical flow R;, as given
by Equation 4:

n

S, R,
Ve ™ ; <a i S BZL R

where n is the number of camera views, a and 3 are weights
of the two measurements, such that o« + 8 = 1 (we set
a = 0.75 and 8 = 0.25). Since we focus on motion vectors,
we are interested in robust and significant motion. Therefore,

Vi@

we apply a weight S = /v3y  +v3p,, to each of the

velocity components (v, vy,v.) falling within the region of
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Fig. 3. Projected silhouettes of the 3D mesh models onto the respective
image planes for 8 camera views.

interest, determined by the projected silhouettes of the 3D
mesh models onto the respective image planes (see Figure 3).
In this way we give emphasis to the velocity components
based on the total length of the estimated 2D optical flow
vector, i.e., the significance of local motions. This had proven
to be an important asset, reducing the impact of erroneous 3D
motion vectors, when falsified pixel-to-vertex correspondences
have been established. The reliability R is a measure of the
“cornerness” of the gradients in the window used to estimate
optical flow , and is determined by the smallest eigenvalue
R = )\, of the second moment matrice,

LI, > LI,
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In this way we check for ill conditioned second moment
matrices , and give emphasis to flow components based on
their reliability. This weighting and combination scheme has
shown to be a robust solution, resulting in more consistent
and homogeneous vector fields, with less outliers and less
erroneous motion vectors. Figure 2.c and 2.f show examples
of the resulting motion vector fields.

®)

III. 3D MOTION DESCRIPTORS

The extracted 3D motion in the form of motion vector fields
are represented efficiently using 3D Motion Context (3D-
MCQ), and transformed into a view-invariant Harmonic Motion
Context (HMC) representation using spherical harmonics. In
the following we give a short description of the two descriptors
introduced by Holte et al. [27].
3D Motion Context. The 3D-MC is a motion oriented 3D
version of shape context [16], [14]. It is based on a spherical
histogram, which is centered in a reference point and divided
linearly into .S azimuthal (east-west) bins and 7" colatitudinal
(north-south) bins, while the radial direction is divided into
U bins (see Figure 1). The 3D-MC extends the regular shape
context to represent the motion vector fields, by using both
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Examples of single view 3D optical flow (a) and (d), “mean 3D optical flow” (b) and (e), and motion vector fields (c) and (f).

the location of motion, together with the amount of motion
and its direction. For each bin of the spherical histogram the
motion vector of each vertex falling within that particular bin,
is accumulated into an embedded Histograms of 3D Optical
Flow (3D-HOF). The 3D-HOF representation is divided into
s azimuthal (east-west) orientation bins and t¢ colatitudinal
(north-south) bins, where each bin is weighted by the length
of the velocity vectors falling within the bin. This results in a
S xT x U x s xt dimensional feature vector for each frame.
Partially invariance to the velocity of movements is imposed,
like in the case where two individuals perform the same action
at different speed, by thresholding and normalizing the feature
vector. Hence, the descriptor gives greater emphasis to the
location and orientation, while reducing the influence of large
velocity values.

Harmonic Motion Context. The 3D-MC descriptor is made
view-invariant with respect to the vertical axis by decomposing
the spherical representation f (6, ¢) into a weighted sum of
spherical harmonics:

o l
FO.0)=) > A"Y™(0,9) 6)

=0 m=—1

where the term A" is the weighing coefficient of degree m
and order [, while the complex functions Y;™ (-) are the actual
spherical harmonic functions of degree m and order . 6 and
¢ are the azimuthal and colatitudinal angle, respectively. In
Figure 1 some examples of spherical harmonic basis functions
are illustrated. The complex function Y;” (-) is given by
Equation 7.

Y™ (0, ¢) = K" P™ (cos ) e/ (7)

The term K" is a normalization constant, while the function
Pllm‘ (+) is the associated Legendre Polynomial. The key fea-
ture to note from Equation 7 is the encoding of the azimuthal
variable ¢, which solely inflects the phase of the spherical
harmonic function and has no effect on the magnitude. This
effectively means that || A}"|], i.e. the norm of the decomposi-
tion coefficients of Equation 6 is invariant to parameterization
in the variable ¢.

The actual determination of the spherical harmonic co-
efficients is based on an inverse summation as given by
Equation 8, where N is the number of samples (S x T), and
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In a practical application it is not necessary (or possible, as
there are infinitely many) to keep all coefficient A]". Contrary,
it is assumed the functions f,, are band-limited, hence it is only
necessary to keep coefficient up to some bandwidth [ = B.
Given the U different spherical shells, the dimensionality
becomes D = U(B + 1)(B + 2)/2. However, since each
bin of the spherical motion context representation consists
of an embedded spherical function in form of a 3D-HOF
representation, each of the inner 3D-HOF representations are
first transformed up to some bandwidth B, and thereafter the
entire motion context is transformed up to some bandwidth
Bs. Hence, the resulting dimensionality D composed of each
transformed 3D-HOF representation D; and the transformed
motion context Dy becomes:

D=D1Dy=U(B; +1)(B1 +2)(B2+1)(B2+2)/4 (9)

Concretely, we set U = 4, B; = 4 and By = 5, resulting in
4 x 315 coefficients.

The spherical motion context histogram is centered in a
reference point, which is estimated as the center of gravity of
the human body, and the radial division into U bins is made
in steps of 25 cm. Furthermore, we set S =12, T =6, s =8
and ¢ = 4, which has shown to produce good results in [27].

IV. AcCTION CLASSIFICATION

The classification of 3D human actions is carried out by
matching the current descriptor with a known set of trained
descriptors for each action class. First, the motion descriptors
are accumulated over time (the video frames of the multi-
view action sequences) to represent entire actions. However,
since action sequences are of variable length, and actors have
individual action performing speed variations, the accumulated
representations have to be normalized. We normalize the accu-
mulated descriptors implicitly in the classification by applying
normalized correlation.

The actual comparison of two descriptors (for both 3D-
MC and HMC) is performed by computing the normalized
correlation coefficient C, as given by Equation 10. To this
end each descriptor is represented as a vector h; and hy of
length n containing the value of the 3D-MC spherical bins
(including the embedded orientation bins), and the (stacked)
spherical harmonic coefficients for the HMC descriptor:

C(hy,hy) = (10)

n2h1h2 — Zhlzh2
VX (002 = (S h1)2] [ (ha)? — (S ha)?]

We make the 3D-MC descriptor view-independent by ver-
tical rotation of the representation, then we compute a set
of normalized correlation coefficients for a discrete number
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Fig. 4. Image and 3D mesh model examples for the 10 actions from the
i3DPost Multi-View Human Action Dataset.

of angular rotations, and select the highest matching score.
The system is trained by generating a representative set of
descriptors for each action class. A reference descriptor is then
estimated as the average of all these descriptors for each class.

V. EXPERIMENTAL RESULTS

To test our proposed approach we conduct a number of
experiments: (1) action recognition using different action sub-
sets, (2) an comparison of the 3D-MC and HMC descriptors,
(3) evaluation of the motion detection, and (4) performance
evaluation with variable number of camera views used for
training and testing of the system.

The i3DPost Multi-View Human Action Dataset. We eval-
uate our approach using the publicly available i3DPost Multi-
View Human Action Dataset [5]. The dataset consist of 8
actors performing 10 different actions, where 6 are single
actions: walk, run, jump, bend, hand-wave and jump-in-place,
and 4 are combined actions: sit-stand-up, run-fall, walk-sit and
run-jump-walk. Additionally, the dataset also contains 2 inter-
actions: handshake amd pull, and 6 basic facial expressions,
which will not be considered in our evaluation. The subjects
have different body sizes, clothing and are of different sex and
nationalities. The multi-view videos have been recorded by a
8 calibrated and synchronized camera setup in high definition
resolution (1920 x 1080), resulting in a total of 640 videos
(excluding videos of interactions and facial expressions). For
each video frame a 3D mesh model of relatively high detail
level (20,000-40,000 vertices and 40,000-80, 000 triangles)
of the actor and the associated camera calibration parameters
are available. The mesh models were reconstructed using a
global optimization method proposed by Starck and Hilton [7].
Figure 4 shows multi-view actor/action and 3D mesh model
examples from the i3DPost dataset.

3D Human Action Recognition. For the first test we use the
data available for all 8 camera views. We perform leave-one-
out cross validation, hence, we use one actor for testing, while
the system is trained using the rest of the dataset. Table I
presents the results of our approach using the 3D-MC and
HMC descriptors in comparison to Gkalelis et al. [8]. The
results show comparable performance for the 3D-MC and
HMC descriptors, but with a slightly better overall perfor-
mance using 3D-MC. For the full action set of 10 actions,
the accuracy for 3D-MC and HMC are 80.00% and 76.25%,
respectively. The confusion matrices for this test are shown in



TABLE I
RECOGNITION RESULTS FOR DIFFERENT SETS OF ACTIONS USING THE 3D-MC AND HMC DESCRIPTORS COMPARED TO GKALELIS ET AL. [8].

Method (%) 10 actions | 6 single actions | 4 combined actions | 9 actions | 5 single actions | 4 single actions
3D-MC 80.00 89.58 84.38 84.72 97.50 100.00
3D-MC-mean 77.50 87.50 81.25 83.33 95.00 100.00
HMC 76.25 85.42 87.50 81.94 95.00 100.00
HMC-mean 68.75 79.17 84.38 73.61 90.00 93.75
Gkalelis 8] - - N - - an.nn - N
S o E S o E
s 3 2 & s 3 2 &
= ¢ 5 5 % 8 = ¢ 5 5 % §
x o g T 2T & % o %I x o g T 2T &% o %I
s 2 5 8 £ 5 § & 2 2 s 2 5 8 £ 5 8§ & 2 2
1.0 1.0
Walk - Walk -
0.9 0.9
0.8 0.8
Jump Jump
40.7 40.7
Bend Bend
10.6 10.6
Hand-wave Hand-wave
10.5 10.5
Jump-in-place Jump-in-place
40.4 40.4
Sit-stand-up Sit-stand-up
0.3 0.3
Run-fall Run-fall
0.2 0.2
Walk-sit Walk-sit
0.1 0.1
Run-jump-walk Run-jump-walk
0.0 0.0
(a) 3D-MC (b) HMC
Fig. 5. Confusion matrices for all 10 actions using (a) 3D-MC and (b) HMC descriptors.

Figure 5. As can be seen, the main errors for both descriptors
occur due to confusion between single actions (walk and run)
and combined actions, which consist of the same single actions
(walk-sit and run-jump-walk). Additionally, for HMC there
is some confusion between bend and sit-stand-up, which are
very similar actions. Furthermore, there is confusion between
the two single actions: walk and run, and the two combined
actions: walk-sit and run-jump-walk, respectively. These errors
possibly result from a combination of descriptor normalization
and a relatively coarse division of the descriptors. While the
normalization incorporates robustness to performing speed
variations of different actors, it reduces the discriminative
power to distinguish between similar movements, which are
characterized by the velocity, like walk and run. Combined
with a coarse division of the descriptors, the representations
might not be descriptive enough to capture the difference
of these actions. If we exclude the run action we obtain
approximately a 5% increase in the recognition rates.

Separating Single and Combined Actions. We now divide
the dataset into 6 single and 4 combined actions and recognize
each action set, separately. For the single action set the accu-
racies of 3D-MC and HMC are 89.58% and 85.42%, and for
the combined actions 84.38% and 87.50%, respectively. The
errors are similar to the confusions reported above, where the
single actions: walk and run, and the combined actions: walk-
sit and run-jump-walk are confused, respectively. It should be
noted that the combined actions are more challenging than the

single actions.

To compare our results to Gkalelis et al. [8], who report an
accuracy of 90.00% for 5 of the single actions, we exclude
one single action (run) and recognize 97.50% and 95.00%
of the actions correctly. By excluding two single actions
we achieve a 100.00% accuracy for both descriptors. These
results are consistent with our expectations and the comparison
of the shape histogram (3D shape context) and the spherical
harmonic representation (harmonic shape context) reported by
Huang et al. [18], where the shape histogram also performs
slightly better than spherical harmonics. The results for 3D-
MC are in general slightly better (~4%) than HMC, since
3D-MC is made view-independent by vertical rotation, and
the best match is chosen. In contrast, HMC is a view-invariant
representation, implicitly accounting for changing view-points.
Furthermore, it is an approximation of the 3D-MC descriptor
by decomposing the representation into spherical harmonic
basis functions within a certain bandwidth. Hence, the clas-
sification of HMC is not only less computational expensive,
but the dimensionality of the descriptor can also be controlled
and reduced by the chosen bandwidth.

Evaluation of 3D Motion Detection. We evaluate the quality
of the estimated motion vector fields by comparing our method
to fuse 3D optical flow from multiple views and the “mean
3D optical flow” determined by the average 3D flow for each
view (see Figure 2). For this purpose we conduct a test using
all 8 camera views and a variable number of actions, and
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Fig. 6. Plots of the recognition accuracy as a function of the number of
classified actions.

compare the recognition accuracy for the two descriptors using
our method (3D-MC and HMC) and the “mean 3D optical
flow” (3D-MC-mean and HMC-mean). The results are shown
in Table I and Figure 6. An overall increase in the performance
can be observed (up to 8.3%) using our method, which
validates the robustness of our approach to estimate motion
vector fields for rich 3D motion description. It should be noted
that the descriptors incorporate robustness to erroneous motion
vectors implicitly.

Variable Number of Camera Views. The main objective of
this evaluation is to test the influence of the number of views
(1-8) used in the multi-view camera system, and how it affects
the action recognition accuracy. First, we test the number of
applied views versus the number of actions to be recognized.
Figure 7.a and 7.b present plots of the results using the 3D-
MC and HMC descriptors. Most important to notice is the
significant performance increase (up to 13.9%), which occurs
when going from one single view to combining two views.
The influence is especially noticeable, when discriminating
between a larger number of actions, which evidently relies
on the quality of the extracted motion used for description.
When introducing more views the performance improves more
moderately, and at 3-4 views it stabilizes. Note that, by using 4
views 3D-HC recognizes 5 single actions perfectly (100.00%
accuracy). Additionally, HMC seems to be more sensitive to
the number of applied views than 3D-MC.

Next, we perform action recognition using all 10 actions
but with a variable number of views to train and test the
system, separately. The results are shown in Figure 7.c and 7.d.
Here, the performance boost (16.3%), when fusing two views,

is even more noticeable than in the first test case. Similar
behavior is taking effect when applying more than two views.
However, the 3D-MC descriptor already stabilizes at 2 testing
views, while the training phase first stabilized at 4 views. In
contrast, the HMC descriptor stabilizes more slowly at a higher
number of views (4-6 views). Notice how 3D-MC gives a
higher accuracy (82.50%), using 5-6 training and 3-4 testing
views, than for all 8 views.

VI. CONCLUSION

In this paper we have presented an approach for human
action recognition in 3D for multi-view camera systems.
One of the main concepts of our approach is the proposed
estimation of 3D optical flow, and how it is combined into
motion vector fields by considering the significance of local
motion and its reliability. This novel technique to derive 3D
motion information has shown to be robust and produces
consistent and homogeneous vector fields with few outliers
and erroneous motion vectors. We have applied and compared
two 3D motion descriptors (3D-MC and HMC) and shown
promising results for the i3DPost Multi-View Human Action
Dataset, within an accuracy range of 76-100%, using all
10 actions and by separating the action datasets into single
and combined action sets. Furthermore, we have evaluated
the performance of the 3D-MC and HMC descriptors for
a variable number of actions and camera views used for
training and testing of the system.
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