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ABSTRACT dimensional representation of faces. Furthermore, inrorde
In this paper a novel non-linear subspace method for fack® represent better the face in various poses, we combine the
verification is proposed. The problem of face verificationproposed criterion with kernel techniques and we present a
is considered as a two-class problem (genuine versus impot&chnique for optimizing the criterion in arbitrary dimessal
tor class). The typicaFisher’s Linear Discriminant Analy-  Hilbert spaces leading to a novel Kernel Discriminant Araly
sis (FLDA) gives only one or two projections in a two-class Sis. However, the main contribution of the proposed diserim
problem. This is a very strict limitation to the search of-dis inant analysis, is that it tries to remedy some of the limita-
criminant dimensions. As for the FLDA fa¥ class problems tions of the kernel methods based on the Fisher’s discrimi-
(N is greater than two) the transformation is not person speglant criterion that provide very limited number of featuires
cific. In order to remedy these limitations of FLDA, exploit two-class problems. For example the so-called Complete Ker
the individuality of human faces and take into consideratio nel Fisher Discriminant Analysis (CKFDA) [3] only two dis-
the fact that the distribution of facial images, under diffe criminant dimensions are found in two-class problems. This
ent viewpoints, illumination variations and facial exmies  space of very limited number of dimensions may be proved to
is highly complex and non-linear, novel kernel discriminan be insufficient for correctly representing facial imagesieT
algorithms are proposed. The new methods are tested in tfgoposed approach discovers a low dimensional space with
face verification problem using the XM2VTS database wheréhe number of dimensions to be proportional to the number
itis verified that they outperform other commonly used kerneof images available for training. Experiments conducted in
approaches. the XM2VTS database using facial images at various poses

. e demonstrate the potential of the proposed methods.
Index Terms— Kernel techniques, Face Verification, P prop

Fisher’s Linear Discriminant Analysis
2. DISCRIMINANT CRITERION

1. INTRODUCTION Before we develop the new optimization problem, we will in-

troduce some notation that is used throughout this papér. Le
r be the reference person that will be used for defining the per-
%on specific algorithms. Lé#,. be the class of genuine vec-
tors andZ, be the class of impostor vector. Lét;, andL;

Be the numbers of genuine and impostor images in the train-

In this paper, face verification is modelled as a two-claebpr

lem. The motivations of such a modelling are supported b
various methods that take into account the individuality o
facial features [6, 1, 2]. The use of person-specific graph

with nodes placed at discriminant facial landmarks greatly .
. ! o Ing set for the person, respectively. Usually, the number of
improves the performance of elastic graph matching in &bnt o . .

e . . genuine images is much smaller than the number of impostor
face verification [6]. In [1] it has been shown that discrim-: . .
. . . o . images for a reference persenThus, in the following anal-
inant non-negative matrix factorization methods with slas = . . .

- . sis we will work under the assumption thaf > L. Let

specific bases perform better than other approaches with co

mon bases. Additional details about modeling face verificaa‘,j\t:atfageJr Ly be the total number of images in the training

tion as a two-class problem are given in [2] introducing the The genuine vectors; of the person: will be denoted

class-specific Fisherfaces, asp, = z; (zi € U,), while the impostor images; of
The methods proposed in this paper exploit the individus, pi = Zi \Zi e P 94

. . . X the person will be denoted as<; = z; (z; € Z.). Let
ality of the human face in order to find a nonlinear subspace

ke P alsop = L L w(p), k= LS ) andm =
representation with enhanced discriminant power. In Hétai P La 25 0(py), R Ly &i=l1 $(k:) m

h e 1 L ;
this paper we propose a novel class-specific discriminant crz 2-i—1 ¢(2:) be the mean vectors of the genuine class, the

- PR wunded by th < of ! spaceZ. Any function k satisfying the Mercer’s condition
This work has been funded by the network of excellence ‘ ‘
BioSecure [ST-2002-507634 (Biometrics for Secure Authartion, F:an be Qsed as a kernel. The dot prOdu,Qb(Qfl) anq(b(zj)
http://www.biosecure.info), under Information Societyciaologies (IsT)  iN the H'”?e'rt space Can.be calculated without having to-eval
priority of the 6th Framework Programme of the European Community  uate explicitly the mapping(-) ask(z;,z;) = ¢(z;)T ¢(z;)




(this is also known as the kernel trick [4]. The kernels that

have been used in our experiments have been the polynom
kernelsk(x,y) = ¢(x)Té(y) = (xTy + 1)? whered is the
degree of the polynomial.

2.1. The Novel Kernel Criterion

Using the criteriaD? and D® two kind of discriminant
i@atures can be calculated. We will call the discriminait pr

jections of the criterionD® as regular while the ones of the

criterion Dif will be called irregular.

2.2.1. Reducing

The criterion that is used in this paper, will be formed us-The first step is to reduce the Hilbert spageby using a

ing a simple similarity measure in the Hilbert spa€e This
measure quantifies the similarity of a given feature vegtor
to the reference facial clagsin the subspace spanned by the
columns of the matrix®@ = [¢p; ... ], withy, € F. The
L, norm in the reduced space spanned by the columms, of
is used as similarity measure:

d(z) =¥ (¢(z) - p)||?
= 07(4(z) — p)(d(z) — p)" ¥
=K ¥ (6(z) — p)(d(2) — p)" W,

1)

linear mapping without discarding any discriminant infasm
tion. This mapping is comprised of the non-null eigenvestor
of S* = W® + B?. The non-null eigenvectors & can be
calculated using the kernel matrices:

[Kl]i,j = ‘f)(Pi)T‘b(Pj) = k(p;» Pj)

(Kal;; = o(ki) é(p;) = k(ki, p;) @
[KB]i,j = ¢(pi)T¢(Hj) = k(p;, Kj) = Kg

(Kil,; = o(ki)"o(kj) = k(ki, k)

The kernel matriXK is the total kernel function defined as:

which is actually the Euclidean distance of a projected sam-

ple to the projected mean of the reference class and is one

most usually employed measures in pattern recognition ap-

plications (i.e, distance from the center of the class).sThi

distance should be low for the samples of the genuine class

and should be high for the samples of the impostor class.
Now, in order to find a discriminant linear transformation

in 7 we demand that the sum of the similarity measut€)

forall z € Z,. (impostor similarity measures) to be maximized

while minimizing the sum of the similarity measurégz) for

all z € U, (client similarity measures). Thus, the discriminant

projectionsy, € F are found in the training set as the ones

that maximize the ratio:

_ ZzezT dr(z)

T Yeeu, dr(2)

Y, DEL P (6(2)-P) (6(2)-P) P,

Y e, KLY (9(2)-P)(6(2)-P) TP,
_ tre"we )
— Tre™B%yw]

whereW® =37 (6(z) — p)(¢(z) — p)",
B? =Y, o (6(z) — p)(4(z) — p)” and tfM] is the trace
of matrix M.

D*(®)
@)

2.2. Two Step Optimization method for the Discriminant
Criterion

In the Hilbert spaceF it is almost impossible to makB®
invertible (the matrixB® is invertible if the dimension of the

of K - { halS ] (5)
andE is defined as:
E— { g ] | (6)
FirstS® can be written as:
S* =W?®4+B*®
= ez, (8(2) — p)(6(2) — p)T
+ 2 scu, (0(2) — p)(6(2) — )" 7
= %Z(g%(¢(z) —p)(o(z) —p)" = 25:1 ﬂiﬁ?

wherefi, = ¢(z;) — pand®; = [fi; ... fx;]. Only the first
n (with n < L — 1) positive eigenvalues &? are of interest
to us. These eigenvectors can be indirectly derived from the
eigenvectors of the matri@f@s (L x L).
The®7 &, can be expanded as:
1

1
ole, = K—EEchL—

—1 E
Lo LLg B+

NZ 1r.Kilr, -
(8)
wherely, . isaLx Lg matrix with elements all equal to one.
LetAf andc;(i = 1... L) be thei-th eigenvalue and the cor-
responding eigenvector @ &, sorted in ascending order

of eigenvalues. It's true thd®,®7)(P,wo,;) = A (Psc;).

feature vectors is smaller than the number of the genuine imFhus, ; = ®,c; are the eigenvectors &. In order to

ages). Thus, vectong, such that,biTBq’z,bi = 0 always exist.
These vectors are very effective for discrimination if tisey-

remove the null space &%, the firstn < L; — 1 eigen-
vectors (given in the matriAl = [wy...w,] = ®:C,

isfy 4] W24, > 0 at the same time, since for these vectorswhereC = [c; . .. ¢,]), whose corresponding eigenvalues are

it is valid that D®(¥) — +oo. In such a case, the criterion
(2) degenerates into the following:
Dy (0) = tr[@TWEE] (O = [.qp;.. ], loy]| = 1).
®3)

non zero, should be calculated. ThTE'S®II = A, with
A, = diag);®...\3?%], an x n diagonal matrix. The or-
thonormal eigenvectors &® are the columns of the matrix:

I, = &,I1A, /2. (9)



It can be easily proven th&" is compact and self-adjoint [&1 . éq] whose columns are the eigenvectors of
and thus the columns of the matdiX; form an orthonormal B~'W in descending order of the eigenvalues.
basis inF. We define the two orthogonal complementary sub-
space®) andOL of F (F = O @ ©1). Ois spanned by the Step 4. CalculateW = EI'WE, and find the irregular dis-
column vectors ofT,. Its orthogonat? is the one that cor- criminant projections using the matfR = [7; ... 7]
responds to the null space 8f. We can now easily prove whose columns are the orthonormal elgenvectoiWof
that there is no discriminant information @~ in respect to
the criterionsD® andDj, since for the vector§ € O+ itis
valid that¢"B®¢ = 0 and¢?W?®¢ = 0 at the same time.
Thus, all the discriminant information lie inside. _ —1/23= \T

Now, based on the previous remarks, the two alternative yi = (A / I=) ([k(z1, y)
discriminant criterions can be defined as:

After following these steps the regular discriminant pro-
jection for a test facial vectay are given by:

- k(zr, Y)]T—
—1=1ongk(p1,y) - k(g y)))- (12)

tr[H7 WH] The number of dimensions of the regular discriminant vec-
(H) = m (10)  tors is less or equal td; — 1. The irregular discriminant
projection for the facial vectaqy is given by:
and _
, o =AY PTEY) ([k(z1,y) .. k(z,y)]" ~
Dy(H) = rH" WH] (||n,|| = 1 andn{ Bn, = 0) (11) —151iigk(pr,y) - E(prg. ¥)))-
(13)
— T P _ Thd
whereW = II, W hH1, B . 11y B¥II, and The number of dimensions of the feature vecferis less
H=][..n,..]Jwithn, € R". or equal toL; — 1. Two distinct similarity measures can be
defined. The first corresponds to the regular discriminant in
2.2.2. Feature Extraction formation:
= i i d(y1) = |[y1 — pall? (14)
LetE = [&,,...,&,] be all the eigenvectors d. The first 4 1

q = Lg — 1 eigenvectors correspond to the nonzero eigenwherep, is the regular discriminant vector gf The second
values (range space). The two orthogonal complementaimilarity measure corresponds to the irregular discrimin
subspaces dB are defined a®p = spar{&,,...,€,} and  information:

Of =spafé,,y,...,£,}. Thus,R" = Of @ Op. Inthe dr(y) = ||y2 — pol|? (15)
spaceOp we seek for the regular discriminant projections,
while in the spaceD3 we seek for the irregular discrimi-
nant projections. We can now summarize the previous pro
cedure for learning the class-specific discriminant tramsf
For each client, the following steps should be applied:

wherep, is the irregular discriminant vector @f. The two
S|m|lar|ty measures can be used in an independent fashion or
can be fused using empirical or discriminant fusion rules [1

3].

Step 1. Calculate the eigenvalues and the eigenvectors of 3. EXPERIMENTAL RESULTS AND DISCUSSION
®T &, and project each facial vectey € U as:

The performance of a verification system is often quoted by a

Y ¢(z;) = (TTAs*) T @7 ¢(2:) particular operating point of theceiver Operating Charac-
= (A )T [y . oy ) 6(2:) teristic (ROC) whereFalse Rejection Rate (FAR)=False Ac-
= (A V)T ([p(z1) ... ¢(z1)]Tp(z;)  ceptance Rate (FRR). This operating point is calldgtual Er-
—[p...p)Tp(z:)) ror Rate (EER). The EER will be used to quantify the perfor-
= (A V)T ([p(z1) ... ¢(z)]Tp(z;)  mance of the tested methods. The specific database contains
—1=1nr6[0(p1) - dlpr )" o(2:)) four recordings of 295 subjects taken over a period of four
_ (HAs_l/z)T([k(zl,zi) .. k(zp,2:)]T months. Each recording contains a speaking head shot and a

rotating head shot. In the specific procedure only the iatati
shots have been used.

The testing database comprises of 120 subjects, 4 record-
nanalysis taB and obtain a set of orthonormal eigen- iqg sessions and one shot of moving heac_i per recording ses-
vectors. Create the two matric&® = [¢,,...,&,] sion. We should note here, that each session in the XM2VTS
and=, = [€,,,.....&,] whereq = rankB) that cor- [5], as well as in the video XM2VTS database, has been cap-
respond to r?on—zero and zero eigenvalues, respectivelgzured with one month time intervals between each other. The

database was randomly divided into 60 clients and 60 impos-
Step 3. CalculateW = =ETwWE,, B B = = ETBE, and find tors. 2 sessions out of 4 of the clients’ class where used for
the regular discriminant features using the malffix=  training the system, while 1 session was used for evaluation

~ i k(e i) - KoL, 7).

Step 2 . In the new space calcula®% andB. Perform eige-



specific CKFDA has been measured more than 30%. As can
be seen the performance of the two-class variants of CKFDA

--E- -H is worse than the multiclass CKFDA. This is attributed to the

very limited feature space that is provided by the two-class

Fig. 1. Data samples used for the experimental proceduréCKFDA. The best EER that has been achieved by our method
Each row represents the images taken from one session was measured at aboGt5% which is a very good perfor-
consist one person’s class. mance considering that the database contains faces atisario
poses.

------ at about 15% for the multiclass CKFDA while for the class
ﬂﬂﬂﬂ-ﬂﬂ--

] ) ) 4. CONCLUSION
and 1 for testing. For the impostors, 2 sessions were used

for evaluation and 2 for testing. The number of images takemovel kernel based methods for discriminant feature extrac
from each session for one person was 10. So, for the trainingons in two-class problems has been defined. The novel meth-
set 1200 images were used. The number of images that weggls overcome the problems of the typical kernel-FLDA and of
used was 1200 for the evaluation and the test set respgctivebther approaches (like CKFDA) that give a very limited dis-
Thus, we have a total @¢f00 client claims and6000 impos-  criminant subspace spanned by one or two discriminant-direc
tor claims for both, the evaluation and the test sets. A simitions for two-class problems. The proposed approaches have
larity measurel,.(y) between faces is found in all the tested peen tested in face verification using facial images under va
methods. In the proposed approaches the similarity messurgus poses, where they show to outperform many other popular
were the ones defined in (14) and (15). In order to reject okernel methods.
accept an identity claim, a threshold should be used on this

similarity measure. The methods in [6, 1] have been used

for class-specific threshold selection. We have testedeédern

Principal Component Analysis (KPCA), multiclass CKFDA [1] S. Zafeiriou, A. Tefas, and I. Pitas, “Learning dis-

and class-specific CKFDA. The multiclass CKFDA gives 59" * ¢iminant person-specific facial models using expandable

regular features and 59 irregular features using commaogsbas graphs,” |EEE Transactions on Information Forensics
for all the classes. The class specific CKFDA produces 2 fea- 5 Sec’urity vol. 2, no. 1, pp. 55 — 69, 2007.

tures, one for the regular discriminant direction and orre fo
the irregular one. [2] S. Zafeiriou, A. Tefas, |. Buciu, and I. Pitas, “Explaig

In Figure 2, the EERs for the test set are plotted for various ~ discriminantinformation in nonnegative matrix factoriza
polynomial kernel parameters for the multiclass KPCA [3],  tion with application to frontal face verification,TEEE
multiclass and class-specific CKFDA [3] approaches (regula  Transactions on Neural Networks, vol. 17, no. 3, pp. 683
and irregular information) and the proposed kernel diserim ~ — 695, 2006.
inant analysis for polynomial kernels of power froito 6. 31 YP. Ki :

.P. Kittler, J Li and J. Matas
The best EER achieved for these methods has been measu I I

5. REFERENCES

, “Face verification using

€U client specific Fisher facesli J T Kent and R G Aykroyd,
editors, The Satistics of Directions, Shapes and I mages,
pp. 63-66, 2000.

[4] J. Yang, A.F. Frangi, J. Yang, D. Zhang, and Z. Jin,
“KPCA plus LDA: A complete kernel Fisher discrimi-
nant framework for feature extraction and recognition,
|EEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 27, no. 2, pp. 230-244, 2005.

[5] K.-R. Muller, S. Mika, G. Ratsch, K. Tsuda, and

B. Scholkopf, “An introduction to kernel-based learn-
‘ ing algorithms,”| EEE Transactions on Neural Networks,
coe vol. 12, no. 2, pp. 181-201, 2001.

) ) [6] K. Messer, J. Matas, J.V. Kittler, J. Luettin, and G. Majt
Fig. 2 ERR for KPCA, multiclass and two-class CKFDA “XM2VTSDB: The extended M2VTS database,” in
methods (regular and irregular space) and the proposed tech  avBpA'99, 1999, pp. 72-77.

nigue with polynomial kernels.



