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Abstract—In this paper a novel method for human movement and internal speed variations during the execution of theesa
representation and recognition is proposed. A movement type iS movement.

regarded as a unique combination of basic movement patterns, e : }
the so-called dynemes. The fuzzy c-mean (FCM) algorithm is Recent studies in psychophysics, e.g., [7], [8], have sug

used to identify the dynemes in the input space and allow the gested that perception of a walking figure may occur from the
expression of a posture in terms of these dynemes. In the so-integration of the body shape over time, i.e., global motion
called dyneme space, the sparse posture representations of anformation is mainly responsible for the recognition otth

movement are combined to represent the movement as a singlemgyement in the human visual system, while local motion

point in that space, and linear discriminant analysis (LDA) is . . . : :
further employed to increase movement type discrimination and information has only supportive role in this process, day.,

compactness of representation. This method allows for simple Motion detection, segmentation and tracking. Inspirednfro
Mahalanobis or cosine distance comparison of movements, taking these studies, we represent a movement with a sequence
implicitly into account time shifts and internal speed variations, of human posture binary masks, i.e., we exploit the global

and, thus, aiding the design of a real-time movement recognition motion information of a posture image sequence. Moreover,
algorithm. we conceive a movement as a unique combination of dynemes,
where each dyneme can be thought as the integration of
the temporally neighboring postures of a movement. Using

There is a bulk of human motion analysis literature. A geFCM, [9], we identify the dynemes in the input space, and
eral review can be found in [1]. In particular, human mOtiO@roject each posture, to the so-called dyneme space. Theespa
recognition encompasses several levels of complexity. ®Inomovement representations in this space are combined thgiel
the many suggestions for motion categorization, here wetadgingle vector, encoding its similarity to the identified éymes.
the three level taxonomy proposed in [2]. In the lower legel, Next, we project the movement vectors with LDA, to increase
dyneme, is described as the most constructive unit of motigRovement class discrimination and compactness of repre-
while one level above, a movement, is conceived as a sequesggtation. This representation allows simple Mahalanalnis
of dynemes, with clearly defined temporal boundaries as websine-based nearest centroid classification, of movesrent
as clear conceptual interpretation, e.g., one period okwal variable length. Experimental results show the applidhiif

An important question in human movement recognition e method for human movement recognition.
what kind of information should be exploited in order to
represent a movement. Most methods in the literature exploi Il. PROPOSED METHOD
either the local or the global motion information within a
sequence of posture images to represent a movement. LoA movement appears in a video as a sequence of human
cal motion information is derived by observing the spatigiosture frames. We assume that binary masks of the postures
variation of points in the human body over time, e.g., bgre available. These masks are further preprocessed t crea
feature tracking. Then position and velocity of these mintegions of interests (ROIs), which have the same dimension,
may be used to represent the movement in the input space, &gntain as much foreground as possible and are centered
[2], [3]. Global motion refers to the shape configurationatthin respect to the centroid of the posture. A posture mask
the human body receives through the course of a movemdR!I is scanned column-wise to produce the so-calesture
without considering any point correspondences. Consefyyienvector x € R and, thus, represent the movement with a
a movement is represented by a sequence of posture imagmatiotemporal trajectory in the input spa¢e,} which is
extracted from the original video, e.g., [4]-[6]. called movement sequence

From the classification point of view, most methods mainly Movement classes highly overlap, and therefore do not
fall within two categories, template matching, e.g., [8],[and express the actual structure of the input spR€e An example
statistical techniques, e.g., [2]. Regardless the claasifin of such overlap is shown in Fig. 1, where a naive observer may
type, movements are often represented as manifolds in somistakenly perceive the sequence of skip postures with run.
space and compared using an expensive similarity metgg, eOne way to counteract this problem and recogrizdifferent
Hausdorff distance, to account for different length movetse movement types, is to assume that there@re R postures,

I. INTRODUCTION
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The iteration is initialized with an initial estimate of miat

V or @ and terminates when the difference of the estimated
matrix between two iterations is smaller than a specified
tolerance.

B. Movement classification

b
(b) Let & be database of movement sequences, where each
Fig. 1. (a) Two postures of skip which can be easily confused with p@.r'.r,tursequ_ence belongs tO. On_e of dlﬁ_erent movement classes.
of run. (b) Two postures of "run”. Ignoring the sequential information, we represent théh
sequence of the-th class with lengthl,, as a set of posture
vectors {xn 1o (T) _}. The total number of movement

the so-called dynemes, which when combined, uniquely chaequences in the databaseNs = Zr:l N,., where N,. is
acterize thek different movements. Based on this assumptiothe number of sequences of thdh class.

we apply the FCM algorithm to discover the dynemes, and Given the dyneme vectors and the fuzzification parameter,
then project the individual postures to the identified dyaem we can express the posture vectors of a movement in respect
In this space, the sparse posture representations of a neovento the dynemes, take the linear combination of the respectiv
are combined to uniquely characterize each movement. TWtors, and get the so-calledovement vectos € RC.
number of dynemes, the dyneme postures themselves andTtherefore, each movement sequence is represented by the

fuzzification parameter are identified with the leave-onme-o respective movement Vectqrsgl), . sg\}) i
. . 1’ R
cross-validation (LOOCV) procedure. If the dimension of the dyneme space is larger than the

number of movement classes, i.€/,> R, we may exploit

the labelling information to further project the movement

vectors using a subspace method, and further improve class
Considering unlabelled posture vectdfs,,...,xp}, we discrimination and representation compactness. A coemeni

apply the FCM algorithm [9] to discover the intrinsic struet Method for this is linear discriminant analysis (LDA). Most

of the input space. FCM algorithm is based on the minimiz&DA algorithms, e.g., [10], seek for the linear projection

A. Computation of dynemes by FCM

tion of the following objective function: Wopr € REXA1, that maximizes the criterioti, p 4 (¥)
c P J (lI’) _ | ‘IITSb‘I’ ‘
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where, P, C' are the number of samples and centroids re-
spectively,x, € R is thes-th sample in the training dataThe matrix ¥ represents a linear transformation, afg,

set, V.= [v,.] = [v1,...,vc] € RF*C is the matrix of Sy € R*C, are the within and between scatter matrices
cluster prototypes, in our case the dyneme representatioigspectively.
® = [p.,] € REXT is the partition matrix withe,., € [0, 1] The rank ofS,, is at mostN — C, and thus, is invertible if

the degree that the-th sample belongs to theth cluster, the number of training videod' is adequately larger than the
m > 1 is the fuzzification parameter angl - ||, is the dimension of the dyneme space Then, the optimum matrix
p-th vector norm. The FCM criterion (1) is subjected oin (4) is formed by the generalized eigenvectorsSqf 'Sy,
producing non-degenerate fuzzy partition of the trainiragad and the projection of the-th movement vector is given by
at each iteration of the optimizatiod® € R*” | Ve,1 : ‘I'Optsnr) .

S e =1 0< X0 6, < Py 0< 6, < 1) Assumlng that the movement classes in the dyneme space
The computation of the cluster centers and partition matrate derived from unimodal Gaussian distributions with the

is carried out through iterative optimization of (1), withet same covariance matri but different meanst(”), r =

update of membership matrix and cluster centers at each step.., R, we can use the maximum likelihood technique to
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If S,, is not invertible an appropriate LDA variant can be
used [11]-[13] . We should also note that before applying
LDA, the movement vectors are standardized using the mean
and the standard deviation along the training set.

A novel movement sequence is projected in the dyneme
space, and the respective movement vector, is standaralizkd
projected with LDA. The unknown movement vector is clas-
sified according to the minimum Mahalanobis or maximum
cosine distance from the movement class prototypes. SIDE

SKIP

C. Algorithm optimization

LOOCV procedure is utilized to determine the dyneme
vectors and the fuzzification parameter. The database may
contain more than one instances of the same person perfprmin
the same movement. Therefore, at each validation cycle the
testing set is formed by all the movement sequences that refe
to a specific person and a specific movement class, while
the rest of the movement sequences form the training set ‘
and used to compute the movement prototypes. The input
to the LOOCYV procedure is the number of dynentesand
the fuzzification parameter.. To determine the optimum pa-
rameters, we follow the global-to-local search strategyilar Fig. 2. Three binary masks for each of the movements walk, run, skip,
to [11], [13]. After globally searching over a wide range of"d1umP:
the parameter space, we find a candidate interval where the

optimal parameters might exist. Then we try to find the optima From each binary mask, the rectangular region containing

parameters W|th|_n this interval. Application of this prdcee the posture is extracted, to form a posture image. All pestur
is shown in section I1I-B. mask ROIls are centered according to the center of mass of
the posture mask. The resulted images are scaled to the same

size, hereb4 x 48, with bicubic interpolation (as in [4]), and

the performance of the proposed method. Each video in t)&ctors.

database depicts a person executing one or more instances
of one particular movement. The binary mask sequences Bbf Algorithm optimization
the videos are provided as well. The mask sequences ar&he classification database contains nine persons perform-
imperfect as they were produced from median backgrouiny ten movements. We select five similar movements to test
substraction and simple thresholding in color space. A fewur method, namely, walk (wk), run (rn), skip (sp), gallapin
masks of walk, run, skip, side and jump are shown in Fig. 8ideways (sd) and jump (jp). The proposed algorithm assumes
We see that the silhouette of jump is highly corrupted. Thifat the training set contains videos depicting a humantgxec
happens because the color of the trousers is similar to flbe cang only a single instance of a movement. In contrary, some
of the background. videos show a person executing several cycles of a periodic
movement. We brake such videos to several videos that show
a person executing only one cycle of the movement, the so-
For non-stationary movements a mask sequence is traoailed movement videpsand thus, we produce a database of
formed to show persons moving in the same direction, eith#50 such videos. The movement videos comprise variable
left or right. This is done by first deciding the direction,daninter- and intra-class length, for instance, the smallédéw
then mirroring the frames of the videos that show a persaoi run consists of 10 frames, while the largest video of side,
moving to an opposite direction from the chosen one. consists of 15 frames respectively.

IIl. EXPERIMENTAL RESULTS

A. Preprocessing



The LOOCYV procedure is used to assess the performamoevements, avoiding expensive comparison metrics, arg] thu
of the algorithm as described in section 1I-C. The numbeffering higher speed and storage efficiency as well as com-
of corrected classified movement sequences at each LOO@afable recognition rates with other state of the art method
cycle are summed to compute the classification rate. Extensin the field, e.g., [3]-[5].
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Fig. 3. Recognition performance in accordance to the number of mhgse
wherem = 1.13, for five movement classes.

A real time algorithm has been also reported in [6]. In this
work, the number of clusters are identified using dominant
sets. Although the clusters identified there may well regmes
the intrinsic structure of the input space, it is not guazadt
that they provide the cluster centers that optimally diearate
different movements, as we pursue in our method. For this
reason, the recognition rate achieved here outperformmsatee
attained in [6].

Currently we are working on the extension of the method
for view-independent continuous human movement recogni-
tion exploiting a multi-camera infrastructure. Initial stéts
on this direction are promising, showing the applicability
of the method for multi-view continuous human movement
recognition.
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