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Abstract. In this paper we present a method for document organiza-
tion and retrieval based on statistical language modeling.The proposed
method, which is based on the vector model, uses nonlinear interpolation
to provide more accurate statistical estimators of the conditional proba-
bilities employed for encoding the context of each word. An information
retrieval system is built using the self-organizing map algorithm. In the
first step, the self-organizing architecture is used to cluster the feature
vectors and to build clusters of semantically related words. Subsequently,
the collection of documents is encoded into vectors and the same algo-
rithm is used to cluster the documents in contextually related classes.
The information retrieval system is queried using a sample document
and the corresponding precision-recall curve is provided.

1 Introduction

Information retrieval (IR) is a difficult task for which a perfect solution has not
been found yet. IR consists of two distinct steps: organization and retrieval. Or-
ganization refers to the representation and storage of the available data, whereas
retrieval refers to the exploration of the organized data through the use of spe-
cific queries [1]. Prior to retrieval, the data repository, which in the case under
consideration is a collection of documents called corpus, has to be organized
according to the retrieval method to be applied. Without a retrieval-oriented
organization method the retrieval of even a fraction of the available documents
becomes onerous [1].

The traditional IR systems rely on index terms in order to index the doc-
uments and use the set theory and the Boolean algebra for retrieval purposes.
A query aiming at exploring these documents must fulfil certain criteria; it is
formulated using a limited number of keywords which are combined together
using Boolean operators. The above described organization and retrieval system
is usually referred to as the Boolean model. The basic drawbacks of the Boolean
model are the following;:
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— It does not support weighting of the terms of the query based on their
significance.

— Users are not familiar with the Boolean logic.

— No sufficient mechanism for ranking of the retrieved documents exists.

A solution to the ranking problem derives from the relaxation of the condi-
tions posed by the Boolean operators with the usage of a set of fuzzy operators [1].
Unfortunately, the weighting problem persists.

An alternative to the Boolean model stems from the following fact; given a
user generated query, the retrieval system should be able to rank the references
in the collection of documents according to their probability of relevance to the
request. This leads to the conclusion that there is a set of relevant and a set of
non-relevant documents in the collection. Through iteratively interaction with
the user, the IR system tries to infer the probability that the user will find a
retrieved document relevant. This model is the so-called probabilistic model. The
major drawbacks of the probabilistic model are the initial guessing of the ideal
set and the inability of the model to take into account the frequency of the index
terms inside the query.

A further constraint regarding these retrieval systems is the fact that they
are capable of handling only keyword-based queries which introduces serious
restrictions; the formulation of such queries is not always feasible. For example,
let consider a user willing to retrieve documents on the basis of a user-defined
document. Due to the limitations of the retrieval system the user would have to
formulate a query from specific terms extracted from the template document. A
more natural approach would be the use of the whole document as input to the
retrieval system.

The aforementioned shortcomings are easily resolved by the vector model. In
this model, the documents and the queries are encoded into vectors. Owing to
the available vector norms, the documents are easily clustered into contextually
relative collections. The similarities between the query and the documents are
measured using vector norms and the retrieved documents are sorted according
to the same norm. Furthermore, the proposed model is user-friendly and supports
term-weighting.

The outline of the paper is as follows. In Section 2 we propose a variant of the
standard statistical language model based on nonlinear interpolation techniques
so as to provide more reliable estimates of word sequences. Section 3 provides a
brief description of the SOM architecture. Section 4 deals with the problem of
the dimensionality of input vectors computed with the proposed variant while in
Section 5.3 the mean squared error and recall-precision curves for both models
are presented.

2 Language Modeling

Language modeling can be seen as a case of statistical inference, which makes
inferences about the unknown distribution of data [2]. An approach divides this
problem into three possibly overlapping areas. Division of training data into



equivalence classes, estimator selection for the classes and combination of estima-
tors. A remarkable number of language modeling techniques have emerged, e.g.
skipping, clustering, caching, higher-order n-grams, tree-based models, lattice-
based models and smoothing [3]. A combination of language models can be found
in [3]. Both speech recognition [4, 5] and information retrieval (IR) [6] resort to
language modeling.

Let V = {w;,ws,..., w} denote the vocabulary of distinct word symbols
having size |V| = k. The a priori probability P(w}*) = P(wy,ws,...,w,,) for
the word sequence wi* = wyws . .. wy, with w; € V and w! = w; can be expressed
as a product of the conditional probabilities P (w;|wiws ... w; 1) = P(w;jwi™"),
using the chain rule:

m

P(wi") = P(w:) - [T Pwilwi™). (1)

=2

Accordingly, the task of language modeling is reduced to the estimation of the
probabilities appearing on the right-hand side of (1). In this paper, the above
word sequence w!™! is referred to as the (i — 1)-length backward history h;
of the underlying stochastic process for P(w!™), where h, € V", n € INT. On
the other hand, the word w; denotes the prediction [7]. All possible conditional
probabilities that the language model estimates are the parameters of the model,
which are |[V|" in number!.

Related to the division of training data into classes is the type of models used.
A widely used language model is the n-gram model. When using this model for
n € INT, the probability P(w*) can be approximated by restricting the history
to the preceding n — 1 words, except for the first few words of the sequence for
which fewer than n — 1 words exist:

m m
P(n) (win) = P(wl) . H P(wi|w:;alx{i,n+1,1}) = P(wl) ' HP(wi|hmin{nfl,i71}) .
=2 =2

(2)
Generally w! = ) when j < i and by = 0 when [ < 1. Also P(w|0) = P(w). An-
other moot point is the value of n, which is related to the number of equivalence
word bins. Higher n values result in more bins and the opposite. The whole
thing constitutes a reliability-discrimination compromise. Generally higher n
values require larger corpora in order to provide robust estimates, owing to the
much larger number of model parameters that need to be estimated. In our
experiments bigram and unigram models are used.

The next issue is the selection of an appropriate statistical estimator for the
parameters of the n-gram models. The straightforward approach for the estima-
tion of the conditional probabilities P(w;|w!”}) ) is the well-known maximum
likelihood (ML) estimator, which uses the notion of relative frequencies [8]. If TC
denotes the training data collection called the training corpus, the ML estimate

! To be more accurate the independent parameters are |V|* — 1 since the sum of the
probabilities equals 1.



of the latter conditional probabilities derived from TC is given by the number of
occurrences of the word sequence constituted by the word w; and its preceding
(restricted) history w{"),,; = hy—; in TC divided by the number of occurrences
of this history:

C(w§7n+l)

— ,1<n<i (3)
C(w;—’}l,+1)

Prrin) (wi|w§:}t+1) =

where c(wf) is the number of occurrences of the word sequence wg in TC. For
bigram models (3) is simplified to:

C(hh UJ)
c(h1)

If N denotes the TC size, that is, the number of word tokens in TC, the unigram
ML estimate is PML(l)(wl) = C(wl) . For the zerogram case, Py (w;) = ﬁ with
U implying a uniform estimate.

Considering the number |V'|™ of potential n-grams in TC, especially when n
increases, and the limited input in terms of both the lexical units and the syntac-
tic limitations of TC, it is concluded that the training corpus only approximates
a small percentage of the potential n-grams. This fact becomes even worse when
natural languages, which have very large |V, are being modeled. To deal with
this sparsity problem of missing, over- and under-estimated n-grams, two meth-
ods are usually used, namely building equivalence word classes, and smoothing
estimates. We shall confine ourselves to the frequently used smoothing methods.

Smoothing is a very useful technique used in the construction of robust lan-
guage models. On smoothing method is the interpolation which performs a suit-
ably weighted combination of n and lower order estimates [9]. During or after
smoothing, the resulting probability estimates are normalized so that they sum
to unity per vocabulary word. Several types of interpolation have been proposed
in speech literature [2, 5, 9]. The nonlinear interpolation method lies among the
best models. Let h, be the generalized history of length n which refers to his-
tories of length less than n. We denote by ¢;(hy,) the number of n-grams which
have exactly ¢ occurrences and their history is h,, in TC. Accordingly, the unseen
n-grams beginning with h,,_; are co(h,—1) in total. The nonlinear interpolation
(NLI) estimate of the backward conditional n-gram probabilities, for n > 1, is:

13ML(2) (w|h1) = (4)

max{c(hn—1,w)=0(hn_1,w), 0}+

c(hn-1)
8(hp—-1, V co(hp— 7
+ ( 1 C)((IL | )0( 1)) PQ(’IU|hn_1), (5)

if c(hn_l,w) =0A C(hn_l) >0
PQ(’U}“Ln,l), if C(hnfl) =0

ﬁNLI(n) (wlhp—1) =

where §(h,_1,w) denotes a discount parameter. The estimate ﬁQ(wmn,l) is
a suitably selected one that takes into consideration a truncated generalized
history. The parameter @ is usually replaced by the same estimate (in our case



NLI), ML or U and Fi,_y by hn_y or 0. Also, P(w|f) = P(w). We use the above
NLI estimate on bigrams and the parameters 4, () are substituted as in:

max {c(hl,w)—D@) (hl), 0}+D(2)(h1)(|V|—Co(hl))ﬁML(l) (UJ)
c(hi)

ﬁNLI(2) (wlhy)=
(6)

where ¢(hy) is non-zero due to the fact that all encountered words are included
in V. For the discount parameter an “absolute model” is used where

Vb C1(2)
(2)( 1) 2) 01(2) + 202(2)

Co(hl) ’

and cy(p) is the number of n-grams with exactly ¢ occurrences in TC [9].

The conventional n-gram modeling is based on the backward context to model
words. Throughout a text a forward word context can also be considered. We
refer to the latter context as “forward” history, g. This history refers to a word
sequence used as a condition and which succeeds a word w that is being pre-
dicted. The “forward” conditional bigram probability estimates for the ML and
NLI cases can be calculated using the Bayes rule:

Purrrz)(91|w) Parr ) (w)
Parry(g1)

; (7)

13ML(2) (w|g1) =

and

13NLI(2) (gl|w)ﬁML(1)(w)
Parr1y(g1)

ﬁNLI(Q) (w]g1) =

where for the unigrams M L estimates are used.

The above models are used to construct feature vectors used by the SOM
algorithm and are based on the contextual information provided in the form of
n-gram estimates. After the corpus processing (Section 5.1) each (word) stem
in TC is modeled as a 3|V| x 1 vector x; of probability estimates. This vector
consists of three |V|-sized parts. These parts for a particular stem consider this
stem as forward history g; of all other stems and as backward history h; of all
other stems, respectively. The ML forward and backward estimates (4) and (7)
in the case of ML (non-smoothed) bidirectional bigram models (ML-BBMs), and
the NLI forward and backward estimates (6) and (8) in the case of NLI smoothed
BBMs (NLI-BBMs) are the two “outer” parts applied on stems instead of whole
words. The NLI conditional probabilities are normalized so that they sum to
unity per history stem. The “inner” part is common for both models and consists
of a scaled unigram ML estimate of the stem x; [10]:
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(9)
where e; denotes the |V| x 1 unit vector that has one in the i-th component and
zeros elsewhere and € is a small real constant, e.g. 0.2. Its purpose is to enhance
the influence of the context part over the symbol part of a stem in topological
ordering.

NLI-BBMs consist our proposal against ML-BBMs, which are commonly
employed in the SOM algorithm [11] for IR purposes.

3 Self-organizing maps

SOMs are feedforward artificial neural networks (NN) with a single computa-
tional layer of neurons arranged on a two or three-dimensional lattice [11, 12].
SOMs are capable of forming a nonlinear mapping from an arbitrary dimen-
sional data manifold onto the low-dimensional discrete map. In doing this, the
algorithm takes into consideration the relations of the presented features and
computes an optimal representation that approximates these data in the sense
of some error criterion, usually the mean square error (MSE).

Let X denote the set of normalized vector-valued observations {x,, =
(T1m, Tam, - TNym) € RNW} where N, is the dimension of the input space?.
By W we denote the set of normalized time varying reference vectors {w;(t)
e RN» i=1,... ,K}, where the notion ¢ denotes discrete time (¢t € IV).

The SOM algorithm works as follows: firstly, the weight vectors of the neu-
rons are randomly initialized. Then, the algorithm randomly selects a feature
vector X,,, from the set X' and exhaustively searches the weight vectors w;(t),i =
1,2,..., K, for the most correlated neuron, the so-called winning neuron. The
index of the winning neuron is given by: ¢ = argmin ||x,,, — w;(t)|| where ||-|| de-
notes the Euclidean distance between the feature vector and the weight vector.

Afterward, both the weight vector of the winner and the weight vectors in
its neighborhood are modified toward x,,,. The following equation describes the
updating process:

(1) = {X 0+ ey )b =5 0] 7 € 1)

2 Section 4 provides the necessary details regarding the dimensionality of the feature
vectors deriving from (9) and the dimensionality used throughout the rest of the
paper.



where A, denotes the neighborhood centered on the winner and ac;(t) is the
so-called neighborhood function.

When the above described procedure is repeated iteratively an adequate num-
ber of times for each x,, it eventually leads to a global ordering of the feature
space on the lattice.

4 Dimensionality reduction

The vectors derived from (9) are in the 3|V |-dimensional space, whose dimension-
ality is exceptionally high. This problem is tackled by using any dimensionality
reduction technique. For example, a reduction to Ny, (N, < 3|V]) is achieved by
the linear projection X,, = ®x,, where X,, and x,, are the projected and origi-
nal vectors, respectively and @ is the NV,, x 3|V | matrix of the linear mapping.
Kaski et. al. suggested a suboptimal approach to the previous problem using a
random matrix ® that has the following properties [13]:

— The components in each column are chosen to be independent, identically
distributed Gaussian variables with zero mean and unit variance.
— Each column is normalized to unit norm.

In this paper N,, is assumed equal to 300.
Afterward, the sample variance of the mth component in the feature vector
is computed using:

\4
um:Z(xmj_im)2a m:1727"'7Nw (11)
Jj=1
where X,, = ﬁ le‘ill Zm; denotes the sample mean and |V| is the number of

feature vectors.

The components of the feature vectors x,, and the neuron weights are rear-
ranged in descending order with respect to their sample variance u,. Finally, the
Euclidean distance used in identifying the winner is decomposed in the following
way':

& No
1Xm — wi(t)]| = Z (Z(jym — w(j)i(t))2 + Z (Z(jym — w(j)i(t))2 (12)
=1 j=dl 1

where Z(j),, and w(;);(t) denotes j-th component of the rearranged (ordered)
feature vector and weight vector correspondingly. Furthermore, d' is an arbi-
trary number, d’ < N,. The first sum in (12) contains the components of the
feature vectors with the strongest values of the sample variance u,,, whereas
the second sum contains the components whose impact in the selection of the
winning neuron is more or less the same for every feature vector. By carefully
selecting the parameter d' and omitting the second sum in (12) one can get an
accurate estimation of the winning neuron. Figure 1 presents the percentage of



the successfully identified winner neuron in respect to the dimensionality differ-
ence which results from the selection of a positive value for the parameter d'. It
can be seen that the performance of the suggested technique is satisfactory for a
further reduction of the space dimensionality up to half of the initial dimension.

Fig. 1. Percentage of successfully identified winning neurons in the formation of the
word category map with respect to the dimensionality difference N, — d'.

5 Application

5.1 Corpus Processing

Throughout the training process a TC comprising 650 full-text HTML files was
used. It contained nearly 230,000 words (word tokens), which were manually
collected over the Internet. The HTML files are web pages of touristic content
and in its current state is biased in the sense that web pages related to Greece,
Spain and Germany form the majority [14]. The selected files are annotated
by dividing them into 18 categories related to tourism such as accommodation,
history, geography etc., so that ground truth is incorporated.

Before testing both language models a series of actions had to be taken in or-
der to be feasible to use (9). The first step deals with HTML as well as plain text
cleaning. HTML cleaning refers to the removal of the HTML tags and entities,
and the appropriate treatment of some special tags, while plain text cleaning
refers to the removal of URLs, email addresses, numbers, punctuation marks
and the formation of word tokens. The sole punctuation mark left intact is the
full stop, providing a rough sentence delimiter. Text cleaning also includes the
removal of some common English words (such as articles, determiners, preposi-
tions, pronouns, conjunctions, complementizers, abbreviations) and some non-
English frequent terms in a processing step called stopping. The aforementioned
step resulted in a corpus of N = 125,000 word tokens (training instances).



Subsequently, stemming is performed. Stemming refers to the elimination
of word suffixes so that the resultant vocabulary shrinks, though keeping the
informative context of the text. The underlying assumption for the successful
usage of a stemming program, called a stemmer, is that morphological variants
of words are semantically related [15]. The application of the commonly used
Porter stemmer [16] resulted in a vocabulary size of |V| ~ 8700 stem types
(distinct occurrences).

5.2 Training

After the encoding of the words appearing in TC into vectors using (9), these
vectors are clustered using the SOM algorithm in an effort to build clusters of
semantically related words. This is based on empirical and theoretical obser-
vations that words semantically relative have more or less the same preceding
and succeeding words. The result of this step is the so-called word category
map (WCM)[12]. Grey levels near 255 imply that fewer word stems have been
assigned to those particular neurons whereas those near 0 mean larger word den-
sities. Figure 2 depicts the WCM and a neuron which is labeled by the words
apartment and room. In the second panel of the Results window can be see the
documents that contained these words.

The final step towards the vector model is the clustering of the documents.
For each of the documents in TC, a normalized histogram of word categories
is computed to derive the so-called document vector ajy. Subsequently, the NN
is trained again using the document vectors resulting in the so-called document
map (DM). The resulting map is expected to contain clusters of contextually
related documents. Figure 3 depicts the resulting clusters in a section of the
map which is labeled by documents relevant to regions of Spain.

5.3 Retrieval

In order to test the suggested language model a series of tests were conducted.
The NN was trained twice. Primarily using ML-BBMs in calculating the fea-
ture vectors and secondly using NLI-BBMs. Our experiments revealed that the
proposed variant leads to more homogeneous clusters than the standard model.
This conclusion is drawn by the fact that the mean squared error (MSE) for
NLI-BBMs was smaller than the MSE for ML-BBMs during the formation of
the WCM throughout the training phase, as depicted in Fig. 4a. Furthermore,
the values of the MSE for the proposed variant was nearly 28% lower than the
standard model during the first iterations of the algorithm. Finally, for the stan-
dard model the number of training iterations needed so that the MSE drops to
the é of the initial value was about 40% higher than the proposed variant.

The quality of the clusters is measured by querying the retrieval system using
a sample test document. The system retrieves the training corpus documents
that are represented by the best matching neuron of the DM. The training
documents retrieved are ranked according to their Euclidean distance from the
sample test document. Subsequently they are classified as either being relevant



Fig. 2. The resulting word category map for a 27 x 27 neural network.

to the sample test document according to their annotation or not. Table 1 is the
2 x 2 contingency table which shows how the training corpus is divided.

For both techniques the precision-recall curve is calculated [17]. Precision is
defined as the proportion of retrieved documents that are relevant: P = r/nq
where r denotes the number of relevant documents which are retrieved and ns
denotes the number of retrieved documents. Recall is the proportion of relevant
documents that are retrieved: R = r/n; where n; is the total number of relevant
documents in the corpus. Figure 4b depicts the recall - precision curves of the
recall phase for both models. It is obvious that NLI-BBMs lead toward more
uniform clusters.

6 Conclusion

The need for a robust language model for IR purposes motivated us to apply a
smoothing method, namely, the nonlinear interpolation for the conditional prob-
abilities. The resulted modeling (NLI-BBMs) was tested against the standard



Fig. 3. The resulting document map DM for a 9 x 9 lattice.

Retrieved Not-Retrieved

Relevant r T n=r+ax
Not-Relevant Y z
ne =r+y

Table 1. Contingency table for evaluating retrieval.

modeling (ML-BBMs) and performed a significant reduction in mean squared
error during the training phase of the SOM algorithm for the construction of the
word category map. Furthermore, the variant leads to better retrieval results
than the standard method with respect to the recall-precision curve. As a result,
it appears to be a compelling competitor of the standard maximum likelihood
approach.
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