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ABSTRACT

A novel class of nonlinear adaptive L-filters based on
cellular neural networks topology is presented. Like cellu-
lar neural systems and cellular automata as well, processing
nodes, called cells, communicate with each other directly
only through its nearest neighbors exchanging information.
Each cell is an adaptive LMS L-filter. The proposed filters
share the best features of both adaptive filters and cellular
neural netwnrk topologies; their adaptive structure tracks
image nonstationarities and their local interconnection fea-
ture makes it suitable for VLSI implementation. Cellular
adaptive LMS L-filters are suited for high-speed parallel
adaptive image filtering. Some interesting applications to
image and image sequence filtering will be demonstrated in
this paper.

1. INTRODUCTION

Adaptive signal processing has exhibited a tremendous growth
in the past two decades. Adaptive filters have been applied
in a wide variety of problems [1]. The most widely known
adaptive filters are linear ones. However, such filters are
not suitable for applications where the noise is impulsive
or where the signal is strongly nonstationary e.g. in im-
age processing. In the later case, a multitude of nonlinear
techniques has been proved a successful alternative to linear
techniques [2]. One of the best known families is based on
the order statistics, i.e., on data ordering. Among the filters
that belong to this family are the L-filters [3]. The adap-
tation of the coefficients employed in order statistic filters
by using linear adaptive signal processing techniques, e.g.
the Least Mean Squares (LMS) algorithm, or the Recursive
Least Squares (RLS) algorithm, has received much atten-
tion in the literature [4]. The majority of adaptive order
statistic filters has been applied to 1-d signals. However,
two-dimensional LMS L-filters have been studied in [5,6].
The major contribution of this paper is in the design of a
novel adaptive L-filter structure that is reminiscent of the
cellular neural network topology [7,8] in order to cope with
the nonstationary nature of images, and moreover, of image
sequences. Due to the fact that all the interactions between
the processing cells (that are adaptive L-filters themselves)
are mainly confined to a finite neighborhood around each
processing cell, the novel adaptive L-filter structure is able
to converge to a set of optimal L-filters that match the local
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image statistics. On the contrary, a single adaptive L-filter
is expected to track nonstationarity only in environments
of slowly varying statistics.

The design of the novel class of the adaptive LMS L-
filters called Cellular Adaptive LMS L-filters is presented in
Section 2. A stability analysis is presented in Section 3 and
the practical question of dynamic range is derived in Section
4. Computer simulation and typical dynamic behaviors of
the proposed filter are discussed in Section 5.

2. DESIGN OF CELLULAR ADAPTIVE LMS
L-FILTERS

In this section we shall derive the adaptation formula for
the Cellular adaptive LMS L-filter in the case of an image
corrupted by zero-mean additive noise. Let us assume that
we scan the image in a specific order. The observed image
pixel value x(i) can be expressed as a sum of an arbitrary
true pixel value d(i) plus zero-mean additive white noise,
i.e.

x(z) = s(i) + n(i) (1)
For notation simplicity, we shall use only one index i to
denote the spatial coordinates. Let L denote the number
of image rows/columns. Depending on the image scanning
method, each pixel (ii, i2); ii, i2 = 1,. . . , L can be repre-
sented by a single running index i. In the case of a still
image, let x(i) be the M x 1 tap-input vector formed by
the image pixel values that lie inside a (2v + 1) x (2v H- 1)
squared window centered on pixel i, i.e.,

x(i) = [x(ii — — u), . . , x(ii, i2),. .. ,x(ii +u, i2 +v)]T.
(2)

Let x@1(i) C x(2)(z) C ... x(M)(i) denote the observed
pixel values arranged in ascending order of magnitude that
form the vector of the order statistics within the observation
window ,c(i) = [x(,)(i), x(2)(t), . . . , X(A.f)(i)]'. Then, the
output of the L-filter of length M is y(i) = aT(i)xr(i),
where a(i) is the L-filter coefficient vector. An ordinary
LMS adaptive L-filter would evaluate first the estimation
error at pixel i e(i) = d(i) _aT0) xr(i) and it would update
the L-filter coefficients as follows [4]-[6]:

a(z + 1) = a(i) + e(i) Xr(i). (3)

It is seen that the adaptation of the L-filter coefficients at
pixel i depends explicitly on all the past values of the de-



sired signal d(l) and the ordered-tap input vectors ,cr(l),
1 < i. Such a direct dependence on the past history in a
nonstationary environment, in addition to the transitions
introduced by the scanning method, prevents the filter to
converge locally to a meaningful solution, i.e., to a filter that
matches the local statistics. This observation motivated us
to adopt an approach where the direct interactions between
image pixels are limited within a finite local neighborhood.
It is well known that cellular neural systems and cellular
automata share the same property: all the interactions are
local within a finite radius [7,8]. Accordingly, we have bor-
rowed the cellular network topology in order to design a
novel adaptive L-filter structure to be called cellular adap-
tive L-filter hereafter.

Let us describe the proposed cellular adaptive L-filter
structure, It is a L x L cellular network having L x L
processing cells, one assigned to each image pixel, arranged
in L rows and L columns. Each processing cell is denoted
by C(i) and it is an adaptive LMS L-filter having coefficient
vector a(i). Around each processing cell a neighborhood is
defined, Let a(i; k) denote the L-filter coefficients of the
i-th processing cell at the k-th iteration. At k = 0, all the
processing cells are randomly initialized. At each iteration,
all the processing cells evaluate synchronously an estimation
error of the form:

E(i; k) = .s(i; k) — aT(i; k) x(i; k); j = 1, . . . , L2. (4)

Following the approach in [2], the steepest descent re-
cursion expression of the new coefficients as a function of
the old coefficients is given by:

a(i; k + 1) = a(i; k) — pVJ(i; k) (5)

where p is the step-size and the mean-squared error is given
by:

J(i;k) = E
[(4 e(i;k))].jE.N'(i)

where N is the cardinality of the processing cells in O)•
By differentiating the mean-squared error J(i; k) of (6) with
respect to coefficients a(i; k) we get the gradient of J(i; k)
and by using the LMS algorithm, we form the adaptation
algorithm. All the adjacent processing cells to pixel i, i.e.,
all the processing cells inside the r-neighborhood of all C(i)
exchange their estimation errors, and C(i) evaluates an av-
eraged estimation error

i(i;k)= 4 > e(j;k); i=1,...,L2
Ef'f( i)

This interaction within a neighborhood can be seen in Fig-
ure 1. Thus, the L-filter coefficients of the i-th processing
cell are updated as follows:

a(i;k+1) =a(i;k)+pE(i;k)x(i;k); i= iL2. (8)
which is a cell dynamic equation.

It can easily be understood that in the case of still im-
ages dO; k) = do), xr(i; k) = xr(i) and O; k) = s(i), for
all iterations k = 1,2 In the case of image sequences,
the index k could correspond either to the frame that is

being filtered or to an iteration index. Unlike the ordinary
LMS algorithm ([5],[6]) for adapting the L-filter coefficients,
which is a recursive algorithm that cannot be implemented
in parallel, the cellular adaptive L-filters can easily be par-
allelized. Indeed, each processing cell exchanges its esti-
mation error with the adjacent cells and all the remaining
operations are local, i.e., they can be performed at each
processing cell, and moreover, in parallel.

3. STABILITY

The basic function of a cellular adaptive L-filter is to trans-
form an input image into a corresponding output image.
This means that our cellular adaptive L-filter must always
converge to a constant steady state following a transient pe-
riod after initialization. In this section, we shall discuss the
convergence property for Cellular Adaptive LMS L-filters.
Our system is a discrete autonomous system therefore, in
order the system to converge, the eigenvalues of the matrix
A must lie inside the unit circle. First, let us recast the cell
dynamic equation (8) in the following form

a(i; k + 1) = A(i)ka(i; 0) + A(i)k_l_P (go) —

+(g(i) — f(i; k)) (9)

where

A(i) = I — xr(i)x'(i) (10)

O; k) = x'(j)a(j; k)x(i) (11)
jEN*(i)

go) = s(j)x(z,) (12)
ieN(i)

and At *(i) is the neighborhood of pixel i excluding pixel
i. If we denote by Xr(i) the matrix Xr(i) =
equation (10) takes the form A(i) = I — Xr(i). Let us
consider the characteristic polynomial of matrix A(i):

k(A) = detA(i) — AI = detl(1 — A)I — Xr(i)I = 0 (13)

where A1, 1 = 1, . . . , M are the eigenvalues of matrix A(i).
The characteristic polynomial of matrix X(i) is

k(m) = detiml — X(i)I = 0 (14)

where m are the eigenvalues of matrix X(i). From the
equations (13) and (14) we can see that the relation between
the eigenvalues of matrix A(i) and the eigenvalues of matrix

(7) )( (i) is

Matrix *xr(Ox(i) has rank 1, therefore its coefficients
have the form

ml=rn2=...mM_1=0
PTmM = (i)xr(i) (16)

From equation (15) we can see that the eigenvalues of ma-
trix A(i) have the form:

AM =1- jx(i)xr(i) (17)

A1 = 1 — l=1...M (15)
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In order the coefficients to converge, the step-size p
must he chosen in such a way that all the eigenvalues will
lie inside the unit circle, This is true for the eigenvalues
A1 . . . AM_I. We have to check the above condition for the
eigenvalue AM : —1 < AM C 1. Thus, the following bound
on p is found, according to (17):

2N
O<p<

Xr (z)xr (i)

Therefore we can conclude that the system converges, when
the step-size p satisfies (18).

4. DYNAMIC RANGE

Samax(i) = Smax E X(m)(i)
m= 1

where Smax is the maximum input value and x(m)(i) is the
in = 1, . . . M element of the ordered-tap input vector x(i).
Proof: Let us consider the matrix A(i). For step-size p =

XT(i)Xr(i)'
which is whithin the theoritical bounds (18),

matrix A(i) can be considered as an idempotent matrix
(i.e., A1(i) = A(i)). This feature of matrix A(i) results
the maximum element of the vector a(i; k) to depend only
on the maximum element of the last part of equation (9).
However, the following equality is valid:

am(i; k) = {g(i) — f(i; k — 1)]m =

X(m)(i) ( s(j) - x(i)a(j; k -
1))

(20)
,iE.W(i) jE11(')

where am(i; k) and [g(i) — f(i; k — 1)]m is the in = 1,. . . , M
element of the vectors a(i; k) and [g(i) —f(i; k—fl], respec-
tively. The sum of s(j) is bounded as follows:

E .s(j)

where 5max is the maximum input value. If Xmin is the
minimum noisy pixel value, the following inequality results:

> 4'(j)a(j;k—l)= E
jEJ'1(i) jEN(i) n=1

� Xmin a(j;k —1)

We can assume that the sum of the initial coefficients is 1
(e.g. in the case when the initial coefficients are equal to the

M M

E am(i; k) P5max>
(18) m=i mn

coefficients of the arithmetic mean). This assumption leads
Mto the condition Emi a(i; 0) = 1 Vi. Using the equations

(21) and (22) and the above condition, the equation (9)
takes the form:

Before we design a Cellular Adaptive L-filter, it is neces-
sary to know the dynamic range of its coefficients in order
to guarantee that it will satisfy our assumptions on the dy-
namical equation stipulated in a preceding section. In order
to study the dynamic range we shall use the sum of filter
coefficients as a figure of merit. The following theorem pro-
vides the foundation for our design.

MTheorem : The sum of the coefficients Sa(i) = >1m=i am(i; 4)
in a cellular adaptive LMS L-filter is bounded for all 4 > 0
and un upper bound can be computed by the following for-
mula:

(19)

k—i / M 1+1

— fltXninSmax
(\E x(m)(i))z=1 mn

\k-
(j X(m)(Z))

(23)
m=i

The step-size p takes values within the range [0,1] and
it is normally several magnitude less than 1. Thus p CC
p Vk > 1. Therefore the third part of (23) is much smaller
than the second one. In particular, in the cases where
Xmin = 0, the third part of (23) becomes zero. From the
above we can consider that the equation (23) can take the
form

M M

E em(i; 4) � pSmax E X(m)(i) (24)
ml m=1

Now let

Samax(i) = PSmax EXm(i) (25)
m=i

Since Semax(i) is independeot of the iteration 4 and the
cell C(i) for all 4 and i, the bound on the states of the cells

a4i; 4) is finite and can be computed via formula
(19).

5. SIMULATION RESULTS

We shall demonstrate the performance of the proposed Cel-
lular Adaptive LMS L-filters through two sets of experi-
ments by employing the noise reduction index NR, defined
as the ratio of the output noise power to the input noise
power, i.e.:

Y (y@ j) - d(i ))22=1 j=1NJ? = lOlog (26t1fr(i) -
In (26) d(i, j) is the original image pixel, x(i, j) denotes
the value of the same image pixel corrupted by noise and
y(i, j) is the filter output at the same image pixel. The im-
ages have been corrupted by mixed additive Gaussian noise
having zero mean and standard deviation 10 and impulsive
noise with probability p = 10% (both negative and posi-
tive impulses with equal probability). A cellular network
of 256 x 256 processing cells has been used. Each process-
ing cell was directly connected to its 2 nearest horizontal
neighboring cells. The procedure we have employed in our
experiments is as follows. Initially, we find the optimal co-
efficients of the classical L-filters [5]-[6]. In the next step,
that we call iteration numberone (i.e., 4 = 1), the adapta-
tion of the cellular adaptive L-filter is initialized with the
optimal coefficients that we got in the previous step. In the

(21)

M

(22)
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next iteration, the initial coefficients of the cellular adap-
tive L-filter are the coefficients that we got in the end of
the previous iteration, and so on.

In the first set of experiments have examined the per-
formance of the cellular adaptive h-filters in the case of still
images. We have filtered the second frame of the sequence
with the proposed cellular adaptive filters for a number of
iterations. The experimentally found optimal value of the
step-size is po = ir5 and it has been observed that it is
within the theoretical bounds (18). The scanning of the
image was performed in the prime-row manner. Table 1
shows the NR we obtained at the end of each iteration. We
stop at the sixth iteration, because no further performance
improvement can be seen. What we can see from Table 1 is
that the NR in the case of cellular adaptive L-filters after
same iterations converges to an upper limit. If the ordinary
adaptive L-filter (3) were used with the same initial con-
ditions a NR of 16.17 dB would be obtained. That is, the
cellular adaptive L-filters yield a 1.5 dB higher NR already
after the first iteration. It is seen that a 3 dB higher NR
is attained at the end of the sixth iteration. Finally, if an
arbitrary choice for the initial filter coefficients were made,
the same superior performance would have been obtained,
but the required number of iterations would be greater.

The same conclusions can be drawn from the figures. In
Figure 2a is displaced the original image and in Figure 2b
the corrupted image. For comparison reasons, the output of
the adaptive L-filter for still images with initial values the
optimum is shown in Figure 2c. The best results obtained,
i.e. the output of the Cellular adaptive filter in the case of
still images, of frame 2, in the sixth iteration is shown in
the Figures 2d. The superiority of Cellular adaptive filters
is self-evident.

In the second set of experiments we have studied the
performance of the proposed cellular L-filters in the case of
image sequence filtering. The first four frames of "Trevor
White" image sequence have been used. Each frame has
been filtered for a number of iterations. Table 2 shows the
NR achieved by the cellular adaptive L-filters after having
processed each frame for five iterations. In the same Table,
the NR achieved by the classical adaptive L-filter (3) is also
listed. It is seen that Cellular adaptive L-filters outperform
the ordinary adaptive L-filter in all cases.

6. DISCUSSION AND CONCLUSIONS

In this paper, we propose a new class of adaptive LMS
L-filters, called Cellular Adaptive LMS L-filters. Unlike
the conventional adaptive filters, our cellular adaptive L-
filters are amenable to parallel processing. Moreover, the
nearest neighbor interactive property makes the proposed
filters much more amenable to VLSI implementation. We
have proved some theorems concerning the dynamic range
of the coefficients and the steady state of cellular adaptive
LMS L-filters.

Simulation experiments have been performed to evalu-
ate the performance of the Cellular Adaptive LMS L-filters
in comparison with the classical LMS L-filters. It has been
found that the "local nature" of the nearest neighbor inter-
connections, leads to better adaptation. It has, also, been
proven that, after a number of iterations the proposed fil-
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ter performance reaches un upper bound. The experiments
have been conducted in both the cases of still images and
image sequences. The proposed cellular adaptive LMS L-
filters yield the best results in all the cases.
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Table 1: Noise reduction in dB achieved by the cellular
adaptive L-filters in the case of still imges.

Iteration NR
1 17.535
2 18.159
3 18.722
4 19,009
5 19.146
6 19.17

Table 2: Noise reduction in dB achieved by the cellular
adaptive L-filters and the ordinary ones in the case of image
sequences.

# frame Cellular Ordinary
second 19.146 16.17
third 17.508 16.052

fourth 17.19 16.088



Figure 1: Interactions within a neighborhood around the
cell i
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(d)

Figure 2: (a) The original frame number 2 of the image se-
quence "Trevor White", (b) the corrupted by contaminated
Gaussian and impulsive noise, frame 2, (c) the output of
the original adaptive L-filter, (d) the output of the cellular
adaptive L-filter after the sixth iteration.

(c)

(a)

(b)


