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Abstract. This paper reports first experimental results in order to access the
properties of the support vector machines in the Walsh Transform Domain for
face detection. We prove theoretical results about the VC-dimension of the
support vector machines which are built in the space of the two-dimensional
(2-D) Walsh functions. Morever, we demonstrate by experiments that support
vector machines in the Walsh Transform Domain can separate more efficiently
face patterns from non-face ones in the sense that the margin between the two
classes of patterns is increased.

1 Introduction

The Bayes likelihood ratio test yields the optimal classifier in the sense that it minimizes
the probability of error [4]. However in order to construct the likelihood ratio, the
conditional probability density function (pdf) for each class must be known. Although,
there are several procedures for estimating a pdf from a finite number of observations
[4], the problem of density estimation is ill-posed [8]. An alternative method to solve
a two-class pattern recognition problem is to resort to example-based techniques, such
as the support vector machines [8].

Support vector machines implement the following idea: Let us map the input vec-
tors, which are the elements of the training set, onto a high-dimensional feature space
through a mapping chosen a priori. In this space, we construct the optimal separating
hyperplane to get a binary decision whether the input vector belongs to the given class
or not. For example, in face detection the input vector comprises the gray levels of pix-
els from a rectangular region of the digital image and the result of the binary decision
is the answer whether this region is face or not.

In general the determination of the separating hyperplane is not easy, because the
dimensionality of the feature space is high. However, in Hilbert spaces one can esti-
mate the inner product of two vectors in the feature space as a function of two vectors
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in input space. These expressions for inner products are referred as kernel functions.
Some kernel functions are well-known, for example the polynomial, the radial, the sig-
moid, etc. [1],[2]. In this paper we will construct support vector machines in the Walsh
Transform Domain. In this case the feature space where the separating hyperplane will
be constructed, gives a good description of the special symmetries of the input vector,
because the mapping of the input vector into the feature space is based on the 2-D
Walsh transform. The 2-D Walsh transform is the sum of the values of the function,
which are multiplied by either +1 or —1 depending on the co-ordinates of the points.
This transform is useful in the pattern recognition [3].

The VC-dimension is the capacity factor of the support vector machine [9], so its
knowledge is very important to control the behavior of the support vector machine. In
this paper we are going to prove several propositions about the VC-dimension of the
class of the 2-D Walsh functions.

The structure of the paper is as follows. Section 2 is a brief overview of the Walsh
system. Section 3 explains the construction of the 2-D Walsh kernel. Section 4 describes
the theoretical results on the VC-dimension of the class of the 2-D Walsh functions.
Section 5 reports the first promising experimental results.

2 The Walsh System

In the literature the term “Walsh functions” refers to one of three orthonormal systems:
the Walsh-Paley system, the original Walsh system, or the Walsh-Kaczmarz system
[7]. These systems contain the same functions and differ only in enumeration. We
will investigate the Walsh-Paley system which will be referred as the Walsh system
henceforth. For more details the interested reader may consult [7].

Notation 1. We will denote the set of non-negative integers by IN, the set of positive
integers by INT | the set of integers by ZZ, and the set of real numbers by IR.

Definition 1. Let r be the function defined on [0,1) by

r(z) = {1, z€[0,1),

-1,z €[3,1)

extended to R by periodicity of period 1. The Rademacher system R = {rp(z),n € IN}
is defined by
rp(z) =r(2"z), =z e€lR,nelN.

Definition 2. Given n € IN it is possible to write n uniquely as

o0
n= Z nka,
k=0
where either ny, = 0 or 1 for k € IN. This expression will be called the binary expansion

of n and the numbers ny will be called the binary coefficients of n.

Definition 3. Let = be an arbitrary element of the interval [0,1). If © has the form
%= for some p,n € IN (0 < p < 2"), we will call x dyadic rational in the interval [0,1).



Definition 4. Any « € [0,1) can be written in the form

oo
T = Z a2~ D)
k=0

where each xy, is equal to either 0 or 1. We will call it the dyadic expansion of x. When
z is a dyadic rational there are two expressions of this form, one which terminates in
0’s and one which terminates in 1’s. In this case, the dyadic expansion of © we will
mean the one which terminates in 0’s.

Definition 5. The Walsh system W = {w,(z),n € IN} is product of Rademacher
functions in the following way. If n € IN has binary coefficients {ny,k € IN} then

wp(z) = H k().
k=0

It is easy to see that this product is always finite, wg = 1 and wo» = 1, for n € IN.
It is worth noticing that each Walsh function is piecewise constant with finitely many
jump discontinuities on [0,1), and takes only the values of either +1 or —1.

Definition 6. The 2-D Walsh system W®) = {win,m)(z,y) | n,m € IN} is defined in
the following way:
Wn,m) (T, Y) = wn (@) - win (y)-

3 The Construction of the Walsh Kernel

In this section we define a new kernel function for support vector machines. The con-
struction is based on Vapnik’s idea [9].

It is well-known, that the Walsh system is a complete orthonormal system on [0, 1)
and the Walsh system is a Schauder basis in LP for 1 < p < oo [7]. This linear space is
a Hilbert space, where the inner product, which is denoted by (-, -), is the integral of
the product of two functions [7].

It is well-known that if f is an IR-valued, integrable function on the interval [0, 1)
then

flx) = Zak(f)wk(m)a (1)
k=0

where a = (f, wg).
In the case of the 2-D Walsh system (1) takes the following form:

o0 o0
f(l’, Z/) = Z Z Q(i,5) (f)w(m) (l’, Z/)-
i=0 j=0
Let V and M be non-negative integers, and

® (v (f) = (a@,0)(f), - > a@m—1)(F), - aw—1,m-1)(f)) -



We would like to note it is convenient to assume that N = 2", M = 2™ and n,m > 2,
where n, m € IN. The reason for these relations stems from the theoretical characteris-
tics of the Walsh functions [7].

Let f and g be IR-valued, integrable functions on the interval [0,1)2. Then the
kernel function is

Ko (f:9) = (v (), @v,n)(9)) -

It is easy to see that K(n a)(f,g) is simply an ordinary inner product in N - M-
dimensional feature space, where ®y 57)(f) is a Walsh transform of the two-dimensional
function f. This transform is very informative, because it is the sum of the values of the
function, i.e. the gray level values, which are multiplied by either +1 or —1 depending
on the co-ordinates of the pixels. In digital image processing the functions f and g are
finite functions, whose domains are sets of connected finite subsets of ZZ2. In this case,
the meaning of the function @ is the discrete 2-D Walsh transform of the function f
[5].

For example, let us consider the first elements of the vector ®(f). The first element
is the sum of the values of the function in the points of the finite subset, the second
element is the difference between the sum of the values of the function on the first half
part and the sum of the values of the function on the second half part. If the second
element of the vector is equal to 0, then there is a balance between the avarage values
of the function on these parts. So the elements of this vector are special measures of
the “symmetries” of the function, which can be useful for describing the image [3].

To determine the value of the kernel function K ar)(f,9) is not a difficult task,
because fast Walsh transforms are well-known in the literature [5].

4 The VC-dimension of the Class of the 2-D Walsh Functions

The Vapnik-Chervonenkis dimension has a very important role in the statistical learn-
ing. The VC-dimension of the support vector machines characterizes the learning ca-
pacity of the machine. With control of the VC-dimension one can avoid overfitting of
the support vector machines and one can minimize the expected value of the error [9].
So the knowledge of the VC-dimension of the class of the functions employed in the
learning algorithm is very important.

At first we quote some definitions from [9], which are important to understand the
theoretical results of this section.

Definition 7. An arbitrary {+1, —1}-valued function with domain IR? is called an 2-D
indicator function.

Definition 8. Let f be an arbitrary 2-D indicator function. The sets

{(z,9) | fle,y) = +1, 2,y € R} and {(z,y) | f(z,y) = =1, x,y € R} are the
separated classes of the domain by using f.

Definition 9. The VC-dimension of a set of 2-D indicator functions is equal to the
largest number h of points of the domain of the functions that can be separated into two
different classes in all the 2" possible ways using a function from this set. If for any n
there exists a set of n points that can be shattered by the functions of the set, then the
VC-dimension is equal to infinity.



In the rest of the paper we assume that the domain of 2-D Walsh functions and of
the 2-D indicator functions is the set [0, 1)?.

Lemma 1. Let x and y be arbitrary elements of the interval [0,1). Let xg,z1,... and
Yo, Y1,--- be the dyadic expansions of © and y, respectively. Let n and m be arbitrary
elements of IN, and ng,n1,... and mg, my,... be the binary coefficients of n and m,
respectively. Then the following equation holds:

W) (1, 7) = (—1)2ommo ™75 (1) 2o T
Proof. By using Definitions 5 and 6. O

Theorem 1. The VC-dimension of the class of all the 2-D Walsh functions is equal
to oo.

Proof. From Definition 6 one can see that the 2-D Walsh system is simply a set of the
products of two one-dimensional (1-D) Walsh functions. Therefore, it suffices to prove
the theorem for the 1-D case, or equivalently for points (z;,0), i =0,...,h — 1.

The proof will be constructive. Let h be arbitrary elements of the set INT. Let
X0, . - .,Xon_1 be all the h-dimensional vectors with elements 0 and 1. Let us construct
a matrix in the following form:

X = (X07"'7X2h71)'

Let us consider the rows of the matrix X as the dyadic expansion of h numbers in
the following form: The dyadic expansion of the ith (0 < ¢ < h — 1) number is

Ti0,---,Tion_1,0,.... We will denote these numbers by p;.
Let vg,...,vp—1 be an arbitrary sequence of the values +1 and —1. We will show
that one from all the 2-D Walsh functions admits the values vy, ...,v,_1 at the points

(p0,0),...,(pr_1,0) of the set [0,1)2.
Let us select an index ¢, which fulfils the following condition

C_fo,ifu =1,
Tit =\ 1, if v; = —1.

Let n be equal to 2°. By Lemma 1, w(y ) (i, 0) = (—l)zkzo ik (—l)zkzo Ok
Because n = 2¢, only n; is equal to 1, and the other binary coefficients of the n are
equal to 0. On the other hand, because y is equal to 0, so the dyadic expansion of
y contains only 0’s. From this follows that wy, ) (pi,0) = (=1)%* = v;. So, the 2-D
Walsh functions can shatter these points. Because the number h is arbitrary, so the
VC-dimension of the set of all 2-D Walsh functions is equal to oo. O

The relations N = 2", M = 2™ and n,m > 2 are assumed in the following.

Theorem 2. The VC-dimension of the set Wy )y = {wp, ko) (z,4) | k1 =0,...,N —
1,ka =0,...,M — 1} is equal to log, (N - M).



Proof. At first, we will prove the VC-dimension of the set Wy a7 is not less than
log, (N - M) = n + m. By Definition 9 it is enough to find n 4+ m points in the set
[0,1)%, which can be shattered by the elements from Wy, ).

Let us consider n + m points in the set [0,1)? in the following form: (3r,0),...,
(2%,0),(0,2%),...,(0,2%). Let us call them as p; of co-ordinates (z;,¥;) (0 < i <

n+m—1).Let ly,...,l+m—1 be an arbitrary sequence of values +1 and —1. We show
that one from all 2-D Walsh functions in Wy ) admits the values lo, ..., lntm—1 at
the points po, . .., Pnrm—1-

Let ug,- .., un—1,0, ... be the binary expansion of u, and v, ...,vm—1,0,... be the

binary expansion of v, respectively. Let us define the binary expansion of v and v as
follows.

C(0,ifl; =1, . o fo,ifl =1, .
11;—{17iflz.:_;[7 (0<i<n—-1), v’_n_{l,ifli:—l,(n§l§n+m_1)'

Then the function w(y.)(z,y) € Win ) admits [; value at the point p; of co-
ordinates (x;,y;), because by Lemma 1
W) (@) = (1) 2okm0 "7 (—1) 2 W08,

From this follows

=)=, if0<i<n—1,
'u](u,v)(l’z;yz) V(=D =1, ifn<i<n+m-—1.

On the other hand, let us consider log, (N - M) + 1 points in the set [0,1)2. Let us
suppose we can find functions w(z,y) from the set Wy ), which can shatter these
points.

It is very easy to check that the number of elements of Wy ar) is N-M. The number
of all vectors of size log, (N - M) +1 is equal to 2'°82 (N-M)+1 — N'. A7 .2 but there are

only N - M functions, so the elements of the set Wy, ;) can not shatter these points.
So the VC-dimension of the set Wy, ) is not greater than log, (N - M). O

Definition 10. Let G = {z,, | n € IN}, where either x, =0 or z,, = 1. Set Iy(z) =G
for all x € G. For each x € G and n € NT define

In(z) ={y € G lyi =2;,0 <i <n}.
We call the sets In(z) the dyadic intervals of order n in [0,1).

Definition 11. By a dyadic step function of order n we mean a finite linear combi-
nation of characteristic functions of dyadic intervals of order n in [0,1).

Definition 12. By a 2-D dyadic step function of order (n,m) we mean a product of
two dyadic step functions of orders n and m, respectively.

Notation 2. We use the following notation:

1, fx>=0,
0(z) = {—1, ifx <0,

where z € IR.



Definition 13. Let fi(x,y) be R-valued functions. We call the set of indicator func-
tions O(fr(x,y) —t), where t € (inf(wvy) fe(z,y),sup(, ) fr(z, y)) , the set of indicators
for functions fr(z,y).

Theorem 3. The VC-dimension of the set lin(Wy ) = {w(z,y) | w(z,y) = a0

w(o,0)(T,Y) + ...+ M-y Wo,Mm-1) (T, Y) + -+ N1, M—1)WN-1,M—1), i) € R}
s equal to N - M.

Proof. Let f be an arbitrary finite linear combination of the elements in Wy 7). By
Definition 5, the function f takes the following form:

N—

E

-1 N-1M-1

ag,jwi(@) - w;y) = aig) [] rie@) I ri ),
k=0 k=0

i=0 i=0 j=0

<.
I
=)

where a(; j) € R. So the function f(z,y) is a finite linear combination of finite prod-
ucts of the first max (n,m) functions in the Rademacher system. The elements of
Rademacher system are piecewise constant with finitely many jump discontinuities on
[0,1). By Definition 1, r,(z) has 2™ — 1 jumps, so the function f(z,y) divides up the
set [0,1)% into N - M parts, at most, by the continuity of the finite linear combination
of continuous functions. Let us suppose that the function f(z,y) divides up the set
[0,1)% into N - M parts.

By [7] it is easy to prove that any 2-D dyadic step function of order (n,m) is a finite
linear combination of the elements of the set Wy 7). By Definition 13 it is enough to
investigate the 2-D dyadic step functions of order (n,m), which are indicator functions.

Let zg,...,zn.p7—1 be elements of the N - M parts. Then these points can be
shattered by the elements in lin(Wy ) by the previously established connection
between the 2-D dyadic step functions and the finite linear combinations of the elements
in W(n ar)- So the VC-dimension is not less than N - M.

Let us suppose the VC-dimension is greater than N - M. Let zg,z1,...,zN.ps be
the points in the set [0,1)2, which can be shattered by the finite linear combinations
of the elements in Wy rr). But in this case, two points of them are in the same
part, independ of the selection of the function in lin(Wy ar)), by the structure of the
Rademacher functions. So every function in lin(Wy, ) admits the same values, which
is a contradiction. O

Corollary 1. The VC-dimension of the kernel function Ky ) is equal to N - M.

5 Experimental Results

For all experiments the Mathlab SVM toolbox developed by Steve Gunn was used [6].
For a complete test, several auxiliary routines have been added to the original toolbox.
A training data set of 46 images, 31 images containing a face and another 15 images
with non-face patterns, is built. The images containing face patterns have been derived
from the face database of IBERMATICA where several sources of degradation are
modeled. For a description of this database the interesting reader may refer to [10].



All images in this database are recorded in 256 grey levels and they are of dimensions
320 x 240. The procedure for collecting face patterns is as follows. From each image
a bounding rectangle of dimensions 128 x 128 pixels has been manually determined
that includes the actual face. This area has been subsampled four times. At each
subsampling, non-overlapping regions of 2 x 2 pixels are replaced by their average.
Accordingly, training patterns of dimensions 8 x 8 are built. The ground truth, that is,
the class label +1 has been appended to each pattern. Similarly, 15 non-face patterns
have been collected from images in the same way, and labeled by —1.

We have trained the three different SVMs indicated in Table 1. The trained SVMs
have been applied to 414 test images (249 face and 165 non-face) from the IBERMAT-
ICA database that have not been included in the training set. The resolution of each
test image has been reduced four times yielding a final image of dimensions 8 x 8. The
test images are classified as either non-face or face ones.

Table 1 summarizes the results of the experiments.

Table 1. Experimental Results

Linear|Walsh |Polynomial
Time (sec) 2.73 | 2.65 2.92

Number of Errors| 10 9 8
Margin 0.6 4.2 3.4
Number of SVs 12 7 9

The first row in Table 1 depicts the time needed for test experiments using each
kernel functions. As can be seen, the support vector machines that are based on the
Walsh functions require less time than the other SVMs. The numbers of errors shown
in the second row are the misclassification errors. That is the number of real faces
either classified as non-faces, or non-face instances classified as faces. From this point
of view the Walsh kernel is in the middle. Perhaps the most significant improvement is
that the margin that separates the two classes admits the largest value in the case of
Walsh kernel. Finally, the number of support vectors in the case of Walsh kernel lies
in between the number of support vectors for the linear and the polynomial case. We
conclude that the performance of support vector machines based on the Walsh kernel
function is in between the performance of the linear and the polynomial support vector
machines.



Fig. 1. Example of false detection. The polynomial SVM detected this image as a face.

Fig. 2. Example of good detection.
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