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Abstract

Support vector machine is a special kind of learning ma-
chines, proposed by Vapnik. The learning capability of sup-
port vector machines depends on the Vapnik-Chervonenkis
dimension of the kernel function used. In this paper we con-
struct a new kernel function for support vector machine,
which is based on Walsh functions. We prove some theo-
retical results related to the VC-dimension of the support
vector machines which are built in the space of the Walsh
functions. First experimental results for face detection are
reported.

1. Introduction

The Bayes likelihood ratio test yields the optimal classi-
fier in the sense that it minimizes the probability of error
[7]. However in order to construct the likelihood ratio, the
conditional probability density function (pdf) for each class
must be known. Although, there are several procedures for
estimating a pdf from a finite number of observations [7],
the problem of density estimation is ill-posed [1]. An al-
ternative method to solve a two-class pattern recognition
problem is to resort to example-based techniques, such as
the support vector machines [1].

Support vector machines implement the following idea:
Let us map the input vectors, which are the elements of the
training set, onto a high-dimensional feature space through
a mapping chosen a priori. In this space, we construct an
optimal separating hyperplane expecting that after projec-
tion the pattern will be linearly separable. One can interpret
the result of the binary decision as the input vector belongs
to the given class or not. For example, in the face detection
the input vector is a region of the digital image, the result of
the binary decision is the answer to the following question:

�A. Fazekas is on leave from Institute of Mathematics and Informatics,
University of Debrecen, H-4010 Debrecen P.O.Box 12, Hungary.

Is this region a face or not?
In the general case the determination of the separating

hyperplane is not easy, because the dimensionality of the
feature space is high. However, in Hilbert spaces one can
estimate the inner product of two vectors in the feature
space, as a function of two vectors in the input space that
it enables us to find the solution.

These expressions for inner products are referred as
kernel functions. Some kernel functions are well-known,
for example the polynomial, the radial, the sigmoid, etc.
[1],[5]. In this paper we will construct a new kernel function
that is based on the Walsh system. In this case, the Walsh
transformation reveals the special symmetries of the input
vectors. The Walsh transformation divides up the elements
of the input vectors and calculates the sum of the elements,
which are multiplied by either �� or ��, of the parts. This
transformation is useful in the pattern recognition [3].

The VC-dimension was defined by Vapnik [1] as the ca-
pacity factor of the support vector machine. Its knowledge
is very important to control the behavior of the support vec-
tor machine. In this paper, we are going to prove some
propositions related to the VC-dimension of the class of the
Walsh functions.

The outline of the paper is as follows. Section 2 is a
brief overview of the Walsh system. Section 3 explains the
construction of the Walsh kernel. Section 4 gives the theo-
retical results on the VC-dimension of the class of the Walsh
functions. Section 5 is devoted to higher dimensional Walsh
kernels and their properties. Section 6 reports first experi-
mental results on face detection.

2. The Walsh system

In the literature the term “Walsh functions” refers to one
of three orthonormal systems: the Walsh-Paley system, the
original Walsh system, or the Walsh-Kaczmarz system [2].
These systems contain the same functions and differ only in
the enumeration. We will investigate the Walsh-Paley sys-
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tem, which will be referred as the Walsh system henceforth.
For more details the interested reader may consult [2].

Notation 1. We will denote the set of non-negative integers
by �, the set of positive integers by �� , the set of integers
by �, and the set of real numbers by �.

Definition 2. Let � be the function defined on ��� �� by

���� �

�
�� � � ��� �� ��
��� � � � �� � ��

extended to � periodically with period 1. The Rademacher
system � � ���� � � �� is defined by

����� � ������� � � �� � � ��

Definition 3. Given � � � it is possible to write � uniquely
as

� �

��
���

���
��

where either �� � � or � for � � �. This expression will be
called the binary expansion of � and the numbers �� will
be called the binary coefficients of �.

Definition 4. The Walsh system � � �	�� � � �� is
product of Rademacher functions in the following way. If
� � � has binary coefficients ���� � � �� then

	���� �

��
���

���� ����

It is easy to see that this product is always finite, 	� � � and
	�� � �� for � � �. It is worth noticing that each Walsh
function is piecewise constant with finitely many jump dis-
continuities on ��� ��, and takes only the values of either ��
or ��.

3. The construction of the Walsh kernel

In this section we will define a new kernel function for sup-
port vector machines. The construction is based on Vapnik’s
idea in [1].

It is well-known, that the Walsh system is a complete
orthonormal system on ��� �� and the Walsh system is a
Schauder basis in 
� for � � � � � [2]. This linear space
is a Hilbert space, where the inner product, which is denoted
by ��� ��, is the integral of the product of two functions over
��� �� [2].

It is well-known if 
 is an �-valued, integrable function
on the interval ��� �� then


��� �
��
���

���
�	����� (1)

where �� � �
� 	��.
Let � be a fixed element of the set �, and

�� �
� � ����
�� � � � � �����
�� �

We would like to note it is convenient to imply the relations
� � �� and � 	 �, where � � �. The reason for these
relations is based on the theoretical characteristics of the
Walsh functions.

Let 
 and � be �-valued, integrable functions on the in-
terval ��� ��. Then the kernel function is

���
� �� � ��� �
���� ���� � (2)

It is easy to see that �� �
� �� has the characteristics of the
inner product in 
�, so �� �
� �� is an ordinary inner prod-
uct in � -dimensional feature space.

It is easy to see, that ��
� is a Walsh-transformation of
the one-dimensional function 
 . This transformation is very
informative, because it is the sum of the values of the func-
tion, which are multiplied with either �� or �� dependly
on the co-ordinates of the points.

In digital signal processing the functions 
 and � are fi-
nite functions, whose domains are sets of connected finite
subsets of �. In this case, the meaning of the function� is
the discrete Walsh transformation of the function 
 .

Let us consider the first elements of the vector ��
�.
The first element is the sum of the values of the function
in the points of the finite subset, the second element is the
difference between the sum of the values of the functions
on the first half interval, and the sum of the values of the
functions on the second half interval. If the second element
of the vector is equal to �, then there is a balance between
the avarage values of the function on these intervals. So the
elements of this vector are special measures of the “sym-
metries” of the function, which can be useful for describing
the signal. In digital image processing 
 is a 2-dimensional
function. In this case, � describes the “symmetries” of the
image, which is represented by function 
 [3].

To determine the value of the kernel function �� �
� ��
is not a difficult task, because some fast Walsh transforma-
tion are well-known in the literature [4].

To construct the support vector machine for the �-
dimensional vector space it is enough to use the product
of one-dimensional kernels, because a tensor of the kernel
functions is a kernel function [1]. We will investigate the
case of higher dimensional functions in Section 5.

4. The VC-dimension of the class of the Walsh
functions

The Vapnik-Chervonenkis dimension has a very important
role in the statistical learning. The VC-dimension of sup-
port vector machine characterizes the learning capacity of



the machine. With control of the VC-dimension one can
avoid the overfitting of the support vector machine and one
can minimize the expected value of the error [1]. So the
knowledge of the VC-dimension of the class of the func-
tions implemented by the machine is very important. In
this section we investigate the VC-dimension of the class of
Walsh functions. At first we quote some definitions from
[1] which are important in order to understand the theoreti-
cal results given this section.

Definition 5. An arbitrary �������-valued function with
domain � is called an indicator function.

Definition 6. Let 
 be an arbitrary indicator function. The
sets �� 
 
��� � ��� � � �� and �� 
 
��� � ��� � � ��
are the separated classes of the domain by using 
 .

Definition 7. The VC-dimension of a set of indicator func-
tions is equal to the largest number � of points of the do-
main of the functions that can be separated into two differ-
ent classes in all the �� possible ways using the functions
of this set of functions. If for any � there exists a set of �

points that can be shattered by the functions of the set, then
the VC-dimension is equal to infinity.

In the rest of the paper we assume that the domain of the
Rademacher functions, the Walsh functions, and the indica-
tor functions is the set ��� ��.

Definition 8. Let � be an arbitrary element of the interval
��� ��. If � has the form �

�� for some �� � � � �� � � � ���,
we will call � dyadic rational in the interval ��� ��.

Definition 9. Any � � ��� �� can be written in the form

� �

��
���

���
�������

where each �� is equal to either � or �. We will call it the
dyadic expansion of �. When � is a dyadic rational there
are two expressions of this form, one which terminates in
�’s and one which terminates in �’s. In this case, the dyadic
expansion of � will be the one which terminates in �’s.

Lemma 10. Let � be arbitrary element of the interval ��� ��
and ��� ��� � � � be the dyadic expansion of the �. Let � be
arbitrary element of � and ��� ��� � � � binary coefficients of
the �. Then the following equation is true

	���� � ����
�
�

��� ���� �

Proof. It is easy to prove using Definition 4. �

Theorem 11. The VC-dimension of the class of all the
Walsh functions is equal to �.

Proof. The proof will be constructive. Let � be an arbi-
trary element of the set �� . Let ��� � � � ������ be all the
�-dimensional vectors with elements � and �. Let us con-
struct a matrix in the following form:

� �
�
��� � � � ������

�
�

Let us consider the rows of the matrix as a dyadic expansion
of � numbers in the following form: The dyadic expansion
of the �th number is ���� � � � � ������� �� � � �. They are con-
sidered as points in the interval ��� ��. Let us call them as
��� � � � � ��.

Let ��� � � � � �� be an arbitrary sequence of the values ��
and ��. We will show that one of all the Walsh functions
admits the values ��� � � � � �� at the points ��� � � � � �� of the
interval ��� ��. Let us select an index � which fulfils the
following condition

��� �

�
�� if �� � ��
�� if �� � ���

Let � be equal to ��. In this case 	����� � ����
�
�

��� �����

by Lemma 10. Because � � ��, only �� � �, and the
other binary coefficients of the � are equal to �. From this
follows that 	����� � ������� � ��. So, the elements of
the set � can shatter those points. Because the number � is
an arbitrary element of the set �� , so the VC-dimension of
the set of all the Walsh functions is equal to �. �

The relations � � �� and � 	 � are assumed in the fol-
lowing.

Lemma 12. The elements of �� � �	� 
 � � �� � � � � ��
�� have � � � jumps at most.

Proof. The elements of �� are the finite products of the
Rademacher functions. By Definition 4 only the first �

functions ����� play role in the product. Let �� be the set
of those points in ��� �� where ����� exhibits jump. It is
easy to see ���� � ��, for � � �. Because the func-
tions of the Rademacher system are piecewise constant with
finitely many jump discontinuities on ��� ��, the elements of
the �� admit 
��
 jumps at most. It is easy to see, that
����� � �� , and the number of the jumps of ����� is equal
to � � �. With this remark the lemma is proved. �

Theorem 13. The VC-dimension of the set �� �
�	� 
 � � �� � � � � � � �� equals �.

Proof. From the proof of Theorem 11 we recall that the
VC-dimension of the set �� is not less than �, because we
proved � points in the interval ��� �� can be shattered by one
of the first �� Walsh functions.

On the other hand, by Lemma 12 a function in the set
�� admits � � � jumps at most. Let us consider � � �



points ��� � � � � ��� ���� in the interval ��� ��, which are in
increasing order. Let 
 be a function of the following form:


��� �

�
�� if � � �� and �� 	
� �� � ��
��� if � � �� and �� 	
� �� � ��

where � � � � ���. Let us suppose we can find a function
	� in the set �� for which the equation 
���� � 	�����
holds. In this case the function 	����� exhibits at least �
jumps. By Lemma 12, this is a contradiction, so the VC-
dimension of the set �� is not greater than �. �

Definition 14. Let � � ��� 
 � � ��, where either �� �
� or �� � �. Set ����� � � for all � � �. For each � � �

and � � �� define

����� � �� � � 
 �� � ��� � � � � ���

We call the sets of ����� the dyadic intervals of order � in
��� ��.

Definition 15. By a dyadic step function of order � we will
mean a finite linear combination of characteristic functions
of dyadic intervals of order � in ��� ��.

Notation 16. We will use the following notation:

���� �

�
�� if � �� ��
��� if � � ��

where � � �.

Definition 17. Let 
���� be �-valued functions. We call
the set of indicator functions ��
���� � ��, where � �
��
�� 
����� ���� 
����� the set of indicators for functions

����.

Theorem 18. The VC-dimension of the set ������ � �
�	��� 
 	��� � ��	����� � � ������	������� �� � ��
is equal to � .

Proof. Let 
 be an arbitrary finite linear combination of the
elements in �� . By Definition 4, the function 
 gets the
following form:


��� �

����
���

��	���� �

����
���

��

����
���

���� ����

where �� � �. So the function 
��� is a finite linear com-
bination of the finite products of the first � functions in the
Rademacher system. From the proof of the Lemma 12 and
because the elements of Rademacher system are piecewise
constant with finitely many jump discontinuities on ��� ��,
the function 
��� exhibits��� jumps at most. (By the con-
tinuity of the finite linear combination of continuous func-
tions.) Let us suppose the function 
��� exhibits � � �
jumps.

From [2] it is well-known that any dyadic step function
of order � is a finite linear combination of the elements of
the set �� . By Definition 17 it is enough to investigate the
dyadic step functions of order �, which are indicator func-
tions. Let  ��  �� � � � �  ��� be points in increasing order in
��� ��, where the function 
��� exhibits a jump. Let �� be
a point in the interval � ��  ���� �� � � � � � ��, where
 � � � and  � � �. These points can be shattered by the
elements in ������� by the previously established connec-
tion between the dyadic step functions and the finite linear
combination of the elements in �� . So the VC-dimension
is not less than � .

Let us suppose the VC-dimension is greater than � . Let
��� ��� � � � � �� be the points in the interval ��� ��, which can
be shattered by the finite linear combination of the elements
in �� . But in this case an element of ������ � exhibits �

jumps, which is a contradiction, by Lemma 12. �

Corollary 19. The VC-dimension of the kernel function
�� is equal to � .

In the following section we are going to investigate func-
tions of higher dimensional spaces. The structure of the the-
orems will be similar to the one-dimensional case, because
the results are based on Theorem 11 and Theorem 13.

5. The VC-dimension of the class of the higher
dimensional Walsh functions

At first we are going to generalize the definition of the
Walsh system (Definition 4) and the Walsh kernel (2) in the
case �-dimensional space.

Definition 20. The �-dimensional Walsh system � �	� �

�	
�	�
���
���
��� 
 �� � ��� � �

� �� 	 �� � � � � �� is
defined in the following way:

	
�	�
���
���
������� � � � � �	� �

	�
���

	�� �����

In the case of the �-dimensional Walsh system the form (1)
gets the following form:


���� � � � � �	�

�
��

����

� � �

��
����

���
���
���
�	
�	�
���
���
������� � � � � �	��

Based on Definition 20 we can construct the function
�

�	�
���
���
����
�, which will give the values ���
���
���
�,

for � � �� � �� and � � � � �. This function is a
hypermatrix-valued function (or operator). We can define
an inner product in the space of those hypermatrices as the



sum of the products of the corresponding elements of the
hypermatrices. From this, it is easy to see the structure of
the �-dimensional Walsh kernel.

Definition 21. The �-dimensional Walsh kernel function
gets the following form:

�
�	�
��
���
��

�
� �� �
�
�

�	�
���
���
����
���

�	�
���
���
������

�
�

Theorem 22. The VC-dimension of the class of all the �-
dimensional Walsh functions is equal to �.

Proof. Let ��� ��� � � � � ��� � � � be arbitrary points of the set
��� ��, which can be shattered by an element of the � . This
system of the points exists by Theorem 11.

Let ���� �
�

�� � � � � �
�

�� � � � be the points, whose co-ordinates
are equal to 0, except �th, which is equal to the co-ordinates
of the points ��� ��� � � � � ��� � � �, respectively. By Definition
20, the elements of � �	� can shatter these points. �

The relations �� � ��� and �� 	 � �� � � � �� are
assumed henceforth.

Theorem 23. The VC-dimension of the set � �	�
���
���
��� �

�	
�	�
���
���
��� 
 �� � �� � � � � �� � �� � � � � �� is equal to

�
���
�	

��� ���.

Proof. At first, we will prove the VC-dimension of the set
�

�	�
���
���
��� is not less than �
�� �

�	

��� ���. By Definition

of VC-dimension it is enough to find �
�� �
�	

��� ��� points
in the set ��� ��	, which can be shattered by the elements

from �
�	�
���
���
���.

Let us consider �
���
�	

��� ��� �
		

��� ��
points ���

����
��� ����

with the co-ordinates

��������� � � � ���	����� in the set ��� ��	 in the fol-
lowing form:

���
�� �


����
���


� �
���� � �� � � � � ��� if � � �� � � � � �� � ��

��� �
���� � �� � � � � ��� if � � �� � � � � �� � ��

...
��� � � � � �� �

���� �� if � � �� � � � � �	 � ��

Let ���
��� � � � � ���
������ ���
��� � � � � ��	
����� be an ar-
bitrary sequence of the values �� and ��. We will show
that one from all the �-dimensional Walsh functions in
�

�	�
���
���
��� admits the values ���
��� � � � � ��	
����� at the

points ���
��� � � � � ��	
�����.
Let !��
��� � � � � !��
������ �� � � � be the binary expansion

of !� �� � � � ��. Let us define the binary expansion of
!� in the following form:

!��
�� �

�
�� if ���
�� � ��
�� if ���
�� � ���

Then the function 	
�	�
�
�
���

������
��� � �

�	�
���
���
���

admits values ���
��� � � � � ��	
����� at the points
���
��� � � � � ��	
����� because by Lemma 10 and Def-
inition 20.

	
�	�
�
�
���

������
��� �

	�
���

����
�
�

��� 
��	�� �	�����

From this follows

	
�	�
�
�
���

������
��� � ����

�
�

��� 
��	�� �	����� � � � �

�����
�
�

��� 
��	�� �	����� �

����
�
�

��� 
��	�� �	����� �

����
��	�� �	����� � ����
��	�� � ���
���

On the other hand, let us consider �
�� �
�	

��� ��� � �
points in the set ��� ��	. Let us suppose we can find func-

tions from the set �
�	�
���
���
���, which can shatter these

points.
It is very easy to see the number of the elements of

�
�	�
���
���
��� is equal to

�	

��� ��. The number of the all

vectors with elements � and � of size �
�� �
�	

��� ��� �� is
equal to �
��� �

�
�
�������� � � �

�	

��� ��, but there are only�	

��� �� functions, so the elements of the set � �	�
���
���
���

can not shatter these points. So the VC-dimension of the set
�

�	�
���
���
��� is not greater than �
�� �

�	

��� ���.

Theorem 24. The VC-dimension of the set
�����	

���
���
���� is equal to
�	

��� ��.

Proof. The proof can be based on Theorem 18.

Corollary 25. The VC-dimension of the kernel function
�

�	�
���
���
��� is equal to

�	

��� ��.

6. Experimental results

For all experiments the Mathlab SVM toolbox developed
by Steve Gunn was used [6]. For a complete test, several
auxiliary routines have been added to the original toolbox.

A training data set of 46 images, 31 images containing a
face and another 15 images with non-face patterns, is built.
The images containing face patterns have been derived from
the face database of IBERMATICA where several sources
of degradation are modeled. All images in this database
are recorded in 256 grey levels and they are of dimensions
��� 
 ���. The procedure for collecting face patterns is
as follows. From each image a bounding rectangle of di-
mensions ��� 
 ��� pixels has been manually determined
that includes the actual face. This area has been subsampled
four times. At each subsampling, non-overlapping regions
of �
 � pixels are replaced by their average. Accordingly,



training patterns of dimensions �
 � are built. The ground
truth, that is, the class label �� has been appended to each
pattern. Similarly, �� non-face patterns have been collected
from images in the same way, and labeled by ��.

We have trained the three different SVMs indicated in
Table 1. The trained SVMs have been applied to 414 test
examples (249 face and 165 non-face) from the IBERMAT-
ICA database that have not been included in the training
set. The resolution of each test image has been reduced
four times yielding a final image of dimensions �
 �. The
test images are classified as non-face ones or face ones.

The following table gives the results on the test.

Table 1. Experimental Results
Linear Walsh Polynomial

Time 2.3581 2.3432 2.5327
Number of Errors 9 8 7

Margin 0.66 4.58 2.17
Number of SV 15 12 8
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