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ABSTRACT 
The mechanism of image processing at each level of the hu-
man visual system (HVS), mechanism which includes signal 
encoding at various HVS receptive fields (RFs) of the neural 
cells is one of the primary concerns of the neuropsycholo-
gists, neurophysiologists and even computer vision scientists. 
Two main theories exist with respect to the face analysis, 
encoding and representation in the HVS. The first one claims 
that the face is represented globally (known also as holistic) 
where the features have “holon”-like appearance. The second 
theory suggests that a more appropriate human face represen-
tation would be given by a sparse representation, where only 
a few neural cells are triggered. Although impressive work 
has been reported in the literature concerning both theories, 
no common agreement was established yet. However, a link 
exists, as, nowadays, the theoretical and experimental evi-
dence brought evidence that the HVS performs face analysis 
(encoding, storing, face recognition, facial expression recog-
nition) in a structured and hierarchical way, where both rep-
resentations have their own contribution and goal. Basically, 
according to neuropsychological experiments, it is believed 
that, for face recognition, the encoding appears to be more 
likely global, while the sparse (or local) image representation 
is for the facial expression analysis and classification tasks. 
However, face and facial expression analysis is not only a 
concern from the neuropsychology field. Applications where 
the human face plays a central role are provided by facial 
biometrics and facial expression analysis. In the light of the 
computer vision perspective, various techniques developed 
by the computer scientists dealing with face and facial ex-
pression recognition fall in the same two image representa-

tion approaches. Accordingly, the findings from neuroscience 
are well correlated with the nature of image representation 
provided by the mathematical models of these techniques, i.e. 
the techniques which were found to perform better for face 
recognition yield a holistic image representation, contrary to 
those techniques which are more suitable for facial expres-
sion recognition and lead to a sparse or local image represen-
tation. This first part of the paper describes the most repre-
sentative techniques for image representation concerning the 
holistic approaches in conjunction with face and facial rec-
ognition tasks, including authors’ personal contribution to 
these areas. 
 

1. INTRODUCTION 
 
The bio-inspired mathematical models of image formation 
and encoding try to simulate the efficient storing, organiza-
tion and coding of data in the human cortex. This is equiva-
lent with embedding constraints in the model design regard-
ing the dimensionality reduction, redundant information 
minimization, mutual information minimization, non-
negativity constraints, class information, etc. The visual 
pathway is depicted in Figure 1. It starts from the retina and 
ends at the two regions of inferotemporal cortex – IT (PIT 
and AIT). Multiple representations of the retinal space are 
mapped onto the cortex in a manner that preserves the visual 
topology. These representations define the visual modules: 
V1, V2, V4, IT. 
 
 



 
 

 
 
Figure 1. Visual pathway structure in HVS. Information 
passes from the retina to the lateral geniculate nucleus (LGN) 
before arriving in cortical area V1. Further processing occurs 
in areas V2 and V4 and the posterior and anterior infero-
temporal (IT) cortex (PIT and AIT). 
 

The type of image encoding is related to the number of 
neurons that are active (respond) to a certain piece of infor-
mation represented by a specific sensory stimulus caused by 
the image. A dense image representation emerges if a large 
cell population with overlapping sensory input is activated 
and contributes to the image encoding. On the other hand, a 
system based on a holistic encoding suffers from slow train-
ing, requires heavy training and is likely to produce redun-
dant image representations. Its main advantage is given by 
the large capacity of making new associations. Dense encod-
ing is closely related to the holistic. The term holistic refers 
to an image representation which stores a face as a perceptual 
whole, without explicitly specifying its parts (components). 
The term component describes the separated parts of the face 
(e.g. eyes, nose, mouth, and chin) that are perceived inde-
pendently as distinct parts of the whole. 

The HVS often serves as an informal standard for evalu-
ating systems. Therefore, not surprisingly, most face analysis 
approaches rely on bio-inspired models. To be plausible, 
these computer vision models have to share some character-

istics and constraints with their organic models. A common 
characteristic of the proposed HVS models is the dimension-
ality reduction principle of image space. Dimensionality re-
duction operates by decomposing the high dimensional data 
into a lower dimensional subspace (yielding the so-called 
basis images) where each original image can be recon-
structed by linearly (or nonlinearly) combination of the re-
sulting basis images using the encoding coefficients. It is 
commonly accepted that the intrinsic dimensionality of the 
space of possible faces is much lower than that of the original 
image space. Basically, the latent variables incorporated there 
are discovered by decomposing (projecting) the image onto a 
linear (nonlinear) low dimensional image subspace. By refer-
ence to neuroscience, the receptive fields can be modeled by 
the basis images of the image subspace and their firing rates 
can be represented by the decomposition coefficients. 
Mathematically, the decomposition is described by X = ZH, 
where X is an m x n matrix comprising n images in its col-
umns (original m-dimensional image space), Z is an m x p 
corresponds to the basis images (image subspace) and H 
denotes the encoding coefficients for the lower p - dimen-
sional subspace (i.e. p < m).  

 

2. HOLISTIC APPROACHES 
 
One of the most popular techniques for dimensionality reduc-
tion is PCA [1], which represents faces by their projection 
onto a set of orthogonal axes (also known as principal com-
ponents, eigenvectors, eigenfaces, or basis images) pointing 
into the directions of maximal covariance in the facial image 
data. By defining the covariance matrix 

with ( )( ){ }T
xxx E µxµxC −−=  where denotes the 

mean image. PCA solution is found by solving the equations 
system 
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PCAPCAx λZZC = , with λ  as eigenvectors.  
 
 

 

 
 

Figure 2. Holistic subspace image representation. From top to bottom, each row depicts 10 basis images (Z) corresponding to 
PCA, FLD, ICA2, NMF, and PNMF (degree 7). For PCA the basis images are ordered by decreasing variance, for ICA2 and 
NMF by decreasing kurtosis. Cohn-Kanade AU-coded facial expression database has been used as image samples.  



 
 
The basis images corresponding to PCA are typically ordered 
according to the decreasing amount of variance they repre-
sent, i.e., the respective eigenvalues. Here ZPCA comprises the 
eigenimages. PCA-based representations of human faces 
provides us a dense encoding and the post-processed images 
have holistic (“ghostlike”) appearances, as drawn in the first 
row of figure 2. The principal components produce an image 
representation with minimal quadratic error. One of the pro-
posed general organizational principles of the HVS refers to 
redundancy reduction. In PCA, this is guaranteed by impos-
ing orthogonality among the basis images, thus redundancy 
is minimized. The nature of information encoded in the basis 
images was analyzed by O’Toole et al. [2]. They found that 
the first basis images (containing low spatial frequency in-
formation) were most discriminative for classifying gender 
and race, while the basis images with small eigenvalues (cor-
responding to a middle range of spatial frequencies) contain 
valuable in-formation for face recognition.  

PCA has been successfully applied to face recogni-
tion [3], and facial expression recognition, respectively [4], 
[5]. One statistical limitation of PCA is that it only decorre-
lates the input data (second-order statistics) without address-
ing higher-order statistics between image pixels. It is well 
known and accepted that, at least for natural stimuli, impor-
tant in-formation (e.g. lines, edges) is encoded in the higher-
order statistics. Another limitation is related to the poor face 
recognition results for PCA when the faces are recorded un-
der strong illumination variations. Another holistic subspace 
image representation is obtained by a class-specific linear 
projection method based on Fisher’s linear discriminant 
(FLD) [6]. This technique projects the images onto a sub-
space where the classes are maximally separated by maxi-
mizing the between-classes scatter matrix and minimizing 
the within-class scatter matrix at the same time. If we denote 
the set of all N = | x | data divided into c classes 
with , then the inter-class scatter matrix 

S
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image of class xi and µ is the mean of all data. Here, ZFLD 
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The solution for finding ZFLD is to solve the generalized eige-
invalues problems: .  The basis im-
ages obtained through FLD are depicted in the second row of 
figure 2. This approach has been shown to be efficient in 
recognizing faces, outperforming PCA. Although this 
method seems to be more robust than PCA when small varia-

tion in illumination conditions appears, it fails in case of 
strong illumination changes. This is due to the assumption of 
linear separability of the classes. This assumption is violated, 
when strong changes in illumination occur. Another draw-
back of this method is that it needs a large number of training 
image samples for reasonable performance. Furthermore, the 
projection onto too few subspace dimensions does not guar-
antee the linear class separability, hence the method will 
yield poor performance. Along with redundancy reduction, 
another principle of HVS image coding mechanism is given 
by phase information encoding. It was shown that methods 
relying only on second order statistics capture the amplitude 
spectrum of images but not the phase. 
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Figure 3. The fiducial features are considered as independ-
ent. What we see is the human faces X composed of those 
supposedly independent features (nose, mouth, eyebrows, 
etc) S mixed through A to form the whole face. By applying 
ICA, the goal is to identify the umixing matrix W to retrieve 
the independent features from Z [20]. 
 
The phase spectrum can be captured by employing higher 
order statistics as independent image components [7]. There 
are several optimization principles taken into account when 
extracting independent components. The one described in [7] 
is based on the maximal information transfer between neu-
rons and, among all the proposed ICA techniques, it seems to 
be the most plausible approach from the neuroscientific point 
of view. Bartlett et al. [8] used two ICA configurations to 
represent faces for recognition. The general idea is depicted 
in Figure 3. PCA was carried out prior to ICA for dimension-
ality reduction. An intermediate step for “whitening” the data 
has been introduced between PCA and ICA processing. The 
data were then decomposed into basis images and de-
composition coefficients. Their second ICA configuration 
(ICA2) yields holistic basis images very similar to those pro-
duced by PCA. Such basis images are depicted in the third 
row of figure 2. In that case, ICA is applied to the projection 
matrix containing the principal components. Under this ar-
chitecture, the linear decomposition coefficients are as inde-
pendent as possible. 

A recently proposed subspace image decomposition 
technique is the Non-negative Matrix Factorization (NMF) 



[9], which allows the data to be described as a combination 
of elementary features that involve only additive parts to 
form the whole. Both basis images and decomposition coef-
ficients are constrained to be non-negative. Allowing only 
addition for recombining basis images to produce the original 
data is justified by the intuitive notion of combining parts to 
form the whole image. Another argument for imposing non-
negativity constraints comes from neuroscience and is related 
to the non-negative firing rate of neurons. Finally, the non-
negativity constraint arises in many real image processing 
applications. For example, the pixels in a grayscale image 
have non-negative intensities. Euclidean distance and Kull-
back-Leibler (KL) divergence were originally proposed as 
objective functions for minimizing the difference between 
the original image data and their decomposition product ex-
pressed by: 
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It has been noticed in several works that, for some databases, 
the NMF decomposition rather produces a holistic image 
representation. The representation could be affected by the 
inaccurate image alignment procedure performed on the 
original database prior to NMF.   

More recently, a generalized NMF variant was de-
veloped in [10]. The approach called Polynomial Non-
negative Matrix Factorization (PNMF) relies on the kernel 
for mapping the original data into a nonlinear feature space 
followed by a data decomposition process where both factors 
remain non-negative. High order dependency between the 
basis images is retrieved while keeping the non-negativity 
constraints on both basis images and coefficients. If the trans-
formed data is denoted by ])(...,),(),([ 21 nxxxF φφφ= , 
with the l - dimensional vec-
tor , a matrix F∈= T

lj ](x)...,,)x(,)x([)( 21 φφφφ x
])(...,),(),([ 21 nzzzY φφφ=  can be found that ap-

proximates the transformed set, such that, each vector 
)(xφ is describes as a linear combination as Yhx ≈)(φ . 

The basis and the coefficients are then updated according to: 
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A measure for quantifying the degree of sparseness in image 
representations is provided by the normalized kurtosis. If the 
basis images are stored as columns of a matrix Z the kurtosis 
of a base image z is defined as 
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z (pixels of base image) and 
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z denotes the sample mean of z. 
The average normalized kurtosis for the 49 basis images are: 
kPCA = 1.22, kFLD = 1.23, kICA2 = 0.93, kNMF = 5.93, kPNMF = – 
0.4117. Thus, by far, NMF is the sparsest representation 
among ones represented in Figure 2. A negative value for the 
PNMF’s kurtosis, method which provides the most global 
image representation, indicates a sub-Gaussian distribution 
for the basis image entries. 
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