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Abstract. This paper is a joint effort between several institutions that
propose a new evaluation method for segmentation techniques using mul-
timodal information. We propose new similarity measures based on the
location and the intensity values of the misclassified voxels and also based
on the connectivity and the boundaries of the segmented data and we
show how the combination of these measures can improve the quality
of the evaluation. The study that we show here has been carried out
using four different segmentation methods from four different labs ap-
plied to a MRI simulated dataset of the brain. We claim that our new
measures improve the robustness of the evaluation and provides better
understanding about the difference between segmentation methods.
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1 Introduction

The goal of medical image segmentation is to obtain a labeled image where each
label corresponds to the real anatomy of the patient. Several technical factors
make this goal hard if not impossible to achieve with the current technology.
The data acquisition process always introduces some noise, and the formation
of the image is limited in resolution, therefore each pixel would correspond to
more than one tissue, situation known as partial volume effect.

A crucial aspect of segmentation techniques is their reliance on contextual
information for them to be effective. An important source of contextual informa-
tion for medical data is the medical knowledge collected on the problem. Turning
this medical knowledge into a set of criteria adapted to computer vision is one
of the most difficult aspects of the development of computerized segmentation
routines. It follows that segmentation techniques are best suited to specific ap-
plications and classes of data, for example to a type of data where an underlying
assumption is true. No segmentation is better than the others for any purpose.
Thus for a particular problem we have to figure out what available method fits



best into our needs in terms of accuracy, speed, reproducibility and user inter-
action.

It is sometimes difficult to assess the accuracy of a method and if it is good
enough for a given application. The common way to do this is to compare its
results with the results obtained by other techniques against reference data,
known as ground truth or gold standard. This process is known as validation
or evaluation. Comparison between the result of an algorithm and the reference
data is achieved by computing a distance (metric) between the two datasets, see
[1–3] for examples.

2 State of the Art on Evaluation Techniques

Many works to evaluate segmentation methods has been reported in the last
two decades. A good survey about segmentation evaluation can be found in [4].
This author distinguishes the evaluation methods between empirical (based on
the study of the results) and analytical (based only on intrinsic features of the
methods). The empirical methods are divided into goodness and discrepancy
methods, where the former are based on the study of the results themselves,
and the latter compare the results with a reference or ground truth. Among the
discrepancy methods, there exist several features reported to measure the quality
of the segmentation: number of misclassified voxels, position of misclassified
voxels, number of objects in the image, feature values of segmented objects and
other miscellaneous quantities.

Most of the methods in the literature for segmentation evaluation are based
on classic discrepancy methods, limited to the computation of the number of
voxels of the segmented classes in the results and in a gold standard. Other
authors has introduced the location of the misclassified voxels as a feature to
measure the discrepancy between segmented images, for example, Yasnoff [5],
Straters [6] and later Pichon [7] proposed to use an error distance from the mis-
classified voxels to the gold standard. Huttenlocher [8] use the partial Hausdorff
distance between set of voxels, and also [1] proposed an overlap distance using
fuzzy set theory to take into account fractional labels coming from multiple test
images. Other work proposed by Cardoso [2] presents a general distance between
segmentation partitions to measure the quality of a given segmentation.

One interesting work about segmentation evaluation is the one published
by Udupa [3] who proposed a methodology based not only on the accuracy of
the segmentation. They also present measures of precision (reproducibility) and
efficiency (time taken), and they stated that the combination of those factors
are essential in the assessment of the performance of any segmentation method.

Some other methods has been proposed to perform segmentation evaluation
without a ground truth, see for instance [9–11].

The main goal of this paper is to introduce new similarity measures to com-
bine them for segmentation evaluation, in terms of accuracy, using a known
ground truth. In order to demonstrate this methodology we will compare four
segmentation techniques for a specific application: brain tissue segmentation.



There is of course, a problem inherent to this way of evaluation, because it is
quite difficult to obtain a reliable reference segmentation dataset. The most used
approach is to use manual segmentation, or a combination of several manual seg-
mentations, from several experts if possible. There is however the possibility to
validate brain tissue segmentation methods on a brain simulated data set as the
one proposed by the Brain Web MR simulator [12]. Their data is very well-suited
for this purpose since a ground-truth classification is known while different types
of MR modalities and image resolution and artifacts can be reproduced.

3 Segmentation Methods

The methods used in this work for the evaluation study has been provided by
four different institutions involved in the Work Package dedicated to medical
applications (WP10), of the Similar network of excellence. These methods are:

– Mean-Shift initialized Level Set method (MSiLS) The mean-shift is
a non parametric clustering technique, that in this case has been imple-
mented in combination with the classic geometric active contour introduced
by Caselles [13] and Malladi [14]. For this application a low-resolution mean-
shift method was leveraged to denoise the original image and then to initialize
deformable contours around CSF and WM homogeneous regions. Then the
contours evolve converging toward the implicit fuzzy boundaries between
CSF, WM, and GM driven by the standard geometric active contour en-
ergy. Since energy-based deformable contour methods are known to work
better on large images, the original images were augmented 10-fold before
segmentation.

– Statistical Parametric Classification using Gaussian Hidden Markov
Random Field Model, (GHMRF) This is a non-supervised parametric
classification technique, that assumes that the data is modeled by a mixture
of Gaussian distributions, and which includes a local spatial prior modeled
by the Markovian theory. The segmentation is done using an adaption of
the EM algorithm, and the probability distributions are initialized by the
k-means algorithm. See [15] for details.

– k Nearest Neighbors, (kNN) This is a supervised non-parametric tech-
nique, that in its classic approach, classifies each voxel independently, by
searching in a set of voxels selected and classified manually by a user. In
order to speed up the search, we implement the algorithm proposed by [16].
Due to that this method is not context dependent, we have applied an initial
non linear filtering [17] in order to remove some noise.

– Split and Merge Segmentation, (SM) This technique is a generaliza-
tion of the classic split-merge algorithm in the sense that during the split-
ting procedure the volume is not subdivided into sub-volumes of the same
type (parallelepipeds) but different splitting configurations are tested. The
method is based on two parameters (T1 for the split part, and T2 for the
merge part), see [18].



4 Evaluation Study

As we have said, the images used in this study comes from the digital brain phan-
tom from McConnell Brain Imaging Center [12]. In this work, all the methods
have been applied to that dataset with noise 5% and no RF on the T1-weighted
modality. The volume used has been preprocessed to remove non brain tissues,
so only the intracranial cavity has been used in the experiments, using a volume
of size 161x187x161 voxels, with isotropic 1 mm voxel size. One axial slice as
well as the volume histogram of this data set are shown in Fig. 1.

(a) (b)

Fig. 1. Axial slice of the brainweb simulated MRI (a) and volume histogram (b)

For the segmentation using GHMRF method, the value of β is fixed empir-
ically to 1.2, U(x, β) follows the Potts model, and instead of computing Z ,the
conditional probabilities at a given point P (xi|xNi) are force to sum up 1 among
all possible labels.

The kNN segmentation have been carried out using a training set of 194
points, using K = 9, and choosing τ = 100, σ = 2, and 5 iterations for the non
linear filtering.

For the SM method, the values that have been used for the input parameters
were T1 = 10, T2 = 38 and N = 3. However the method is fairly insensitive to
small deviations (±20%) from the values of T1, T2.

We show in Fig. 2, the segmentation results for the axial slice chosen, using
blue for CSF, yellow for GM and dark green for WM. In these images we also
show in grey and pink the voxels that overlap between GM and WM, and in blue
and red the voxels that overlap between CSF and WM. There are no voxels in
this slice belonging to the overlap between CSF and WM, because there is little
overlapping between those classes and no overlap in this particular slice.



(a) (b) (c) (d)

Fig. 2. Segmented images of the axial slice of Fig. 1 with error voxels overlapped, using
MSiLS (a), GHMRF (b), kNN (c) and SM (d)

4.1 Classic Similarity Measures

One classic approach to determine how good are the segmentations, are similarity
measurements based on region overlap. One of the most common measures is
the construction of the confusion tables, whose values represent the overlapping
between two classes with respect to the number of voxels of the class in the gold
standard

Mij :=
|Xi ∩ Yj |
|Yj |

(1)

where the subindices represent the classes and || stands for the number of
elements. Other common measures used are the Jaccard (JC), Dice Similarity
(DS), Tanimoto (TN), and Volume Similarity (VS) coefficients. All of them take
values between 0 and 1. If X is the set of voxels segmented as class c in one
volume, Y is the set of voxels of the same class in the other volume, a = |X∩Y |,
b = |X\Y |, c = |Y \X|, and d = |X ∪ Y |, we can define these measures with the
following expressions,

JC :=
|X ∩ Y |
|X ∪ Y |

=
a

a + b + c
(2)

DS :=
2|X ∩ Y |
|X|+ |Y |

=
2a

2a + b + c
(3)

These two coefficients are equal to one if X and Y are the same region, and
zero if they are disjoint regions. In fact, they are related by DS = 2JC/(JC+1).

TN :=
|X ∩ Y |+ |X ∪ Y |
|X ∪ Y |+ |X ∩ Y |

=
a + d

a + 2b + 2c + d
(4)

This case is one if X is equal to Y, and zero if they are disjoint regions and
they occupy all the image.

V S := 1− ||X| − |Y ||
|X|+ |Y |

= 1− |b− c|
2a + b + c

(5)



This is one if the number of elements of X is equal to the number of elements
of Y, and zero if one of them is empty. In Fig. 3 we show the results of these
similarity measures computed over the segmented volumes obtained with each
method, and using the gold standard.

Fig. 3. Classic similarity measures (JC, TN, VS and DS) computed for all methods,
A: MSiLS, B: GHMRF, C: kNN, and D: SM

Looking at Fig. 3, we can have a rough idea about the accuracy of the different
methods. However, some values like the TN coefficients differs from the values
obtained by the other coefficients (for instance, the classes are ordered different
than the other three coefficients) and give values that hardly can differentiate
the methods. This is because it depends on the number of voxels outside X
and Y, that can be very large in our case, therefore leading to values near one,
even if there is not too much overlapping. The VS coefficients present results
not realistic (notice an almost perfect classification of WM in MSiLS method),
that is because it depends only on the number of voxels of X and Y, and it can
be one even if there exists no overlapping at all. And finally the JC and VS
coefficients show values equivalent as expected. For those reasons, we will use
the JC coefficient for our evaluation study.

4.2 Distance Based Similarity Measures

The error measures described above are based only on the number of voxels of
the classes in the segmented image and in the gold standard, their union, and
their intersection. We propose in this section to include the voxels location to
improve qualitatively the error measurements. As Pichon [7], and also Crum [1]
recently proposed, it is important to use the distances from the misclassified
voxels to the ground truth in order to improve the similarity measures. We can
define the distances from the misclassified voxels as in [7]



d(r) :=

0, r ∈ X ∩ Y
minx∈X ||r − x||, r ∈ Y \X
miny∈Y ||r − y||, r ∈ X\Y

(6)

Other popular distance is the Hausdorff distance, defined as

H(X, Y ) := max{max
x∈X

min
y∈Y

||x− y||,max
y∈Y

min
x∈X

||x− y||} (7)

which is the maximum distance one set has to move its boundaries so that it
would enclose the other set. With any of the distance definitions mentioned, it
is possible to obtain more reliable similarity measures. Some of those measures
can be the Yasnoff discrepancy measure [5], the Factor of Merit [6], or just the
mean (µ) and standard deviation (σ).

We propose to use the distance defined in (6), to define a new similarity
measure that takes values between 0 and 1. The idea is to penalize more those
voxels that are more distant from their corresponding class in the gold standard,
i.e. to weight every misclassified voxel by its Euclidean distance to the nearest
voxel of the class it should belong to. To compute those Euclidean distances, it
is enough to simply compute the Distance Transformation (DT) from a given
class in the gold standard to the rest of the image, and look at the voxels of the
DT at the positions of the misclassified voxels. We will use the squares of the
distances to penalize more to very distant voxels.

The new measure we propose is called JCd, and is defined by substituting
the values b and c from (2), by

∑
i d(xi)2 and

∑
i d(yi)2 respectively, where xi

are misclassified voxels of X that should be classified as Y , yi are voxels of Y
that should be classified as X, and d() is the distance defined in (6). Obviously
we can use any of the other measures definitions of equations 4,5,3, to construct
the new measure, but we will use the JC coefficient for the reasons commented
in sect. 4.1.

The mean and standard deviation of the distances for every segmented class
and for every method is shown in Fig. 4 (a). In Fig. 4 (b), we show the values
of JCd.

4.3 Intensity Based Similarity Measures

In this section we introduce another similarity measure, but this time instead of
using Euclidean distances in the image, we use the intensity values. The idea is
to penalize more the misclassified voxels that should belong to a given class c,
when it is close to the theoretic mean of that class c, because the voxels that are
near the theoretic mean, should be easy to classify. Therefore, we will define a
weighting function, dependent on the theoretic mean and variance of each class.
Those parameters are easy to obtain from the gold standard and the original
data, by computing the mean and variance values of the original voxels indexed
by each class in the gold standard segmentation. Then, we can construct three
probability density functions for each class, Ycsf , Ygm and Ywm, that can be used
to define the weighting function F, that we can express as



(a) (b)

Fig. 4. Average distances and standard deviation for the misclassified voxels (a) and
distance based similarity measures, JCd, computed for all methods (b)

F = H(1 + Ycsf + Ygm + Ywm) (8)

where H is a constant that increases the penalization effect at each misclas-
sified voxel if it increases. We are not using the number of voxels of each class to
weight each density function because we just want to weight each misclassified
voxel by its distance to be theoretic mean. We show the weighting function F ,
in Fig. 5 (a).

Using this function, we can define a new similarity measure, that we will
call JCi changing b and c by

∑
i F (xi) and

∑
i F (yi) respectively in (2). Again,

we obtain a measure constrained between 0 and 1, and the results obtained are
shown in Fig. 5 (b), using H = 10.

4.4 Connectivity Coefficient

Other similarity measure can be defined using the connectivity of labeled im-
ages. The connectivity of a region X, in a 3D regular grid is defined using a
morphological dilation operator Ds, with s a structuring element. We say that
X is connected with other region Y , if

Ds(X) ∩ Y 6= ∅ (9)

We use a 3x3x3 structuring element, thus defining a connectivity taking the
26 closest neighbors of each voxel. The number of connected components for
each class NXc in the segmented volume can be compared with the number of
connected components for the same class in the gold standard NYc . The defini-
tion of a connectivity coefficient CC that takes values between 0 and 1 can be
expressed as



(a) (b)

Fig. 5. Weighting function F (a), and intensity based similarity measure computed for
all methods (b)

CCc :=
min{NXc , NYc}

NXc
+ NYc

(10)

4.5 Similarity Measures on the Boundaries

It is also interesting to use the segmented boundaries to measure the similarity
between the ground truth and the segmentations. A measure between 0 and 1 can
be defined using the JC for boundaries. Given the boundary of one segmented
class, c, ∂Xc, and the boundary of that class in the ground truth, ∂Yc, the
boundary JC coefficient is defined as

BJCc :=
|∂Xc ∩ ∂Yc|
|∂Xc ∪ ∂Yc|

(11)

Sometimes, the segmented images may contains many small groups of isolated
voxels. Of course, those erroneous voxels are significant on our error measures,
but we want a measure definition that does not take into account those voxels,
because counting scattered voxels placed outside the main boundaries or in holes
inside them, will decrease this similarity measure even if the boundary of the
ground truth really fits with the boundary of the segmented image, and that
issue will be addressed by the connectivity coefficient, CC. Therefore, we will
use the modified boundary for every class in the segmented image ∂X ′(c). We
can express ∂X(c) as the union of non connected sets

∂Xc =
⋃
i

∂Xi
c where Ds(∂Xi

c) ∩ ∂Xj
c = ∅ ∀ i, j, i 6= j (12)

where Ds, is the morphological dilation operator, as defined before. The new
boundary ∂X ′(c) is then defined as



∂X ′
c =

⋃
k

∂Xk
c where ∂Xk

c ∩ ∂Yc 6= ∅ ∀ k (13)

and the modified measure is:

BJC ′
c =

|∂X ′
c ∩ ∂Yc|

|∂X ′
c ∪ ∂Yc|

(14)

4.6 Global Multimodal Similarity Measure

A global definition of a similarity measure is also needed. We propose to use the
above definitions to combine different features to obtain more objective and reli-
able results. In this work we state that, as well as in human vision, an intelligent
system should employ several features to decide between different segmentation
results. An intelligent similarity measure, will emerge from the combination of
the measures proposed before, a multimodal similarity measure. The Fig. 6 illus-
trate better our idea. In those figures we have plotted the results of two similarity
measures, one of them representing the x axis and the other one the y axis. Us-
ing this representation we can see more clearly the differences between several
methods than in unidimensional plots. In the figures we have also plotted some
circles placed at the middle point of each method, by averaging the values of all
classes, and using a radius proportional to the standard deviation. Notice that
better measures correspond to smaller circles and closer to the (1, 1) point.

Finally, in order to define a global similarity measure that include all the
measures described here, let’s construct a vector of similarity measures for a
given class

vc = [JCc, JCdc, JCic, CCc, BJC ′
c] (15)

which is a vector composed of the classic Jaccard coefficient JC, the dis-
tance based JC, the intensity JC, the connectivity coefficient, and the modified
boundary JC. The global similarity measure for a given class c, will be

Gc := [vcKvc
T ]1/2 (16)

where K is a matrix whose elements Kij weights the different measures be-
tween them. For simplicity, we will use K with values different from zero only
in the diagonal, Kii 6= 0, all of them taking the same value, which is natural
because all the measures used are defined between 0 and 1, being 0 the worst
case and 1 the perfect case. Depending on the application, it could be useful to
increase or decrease some of the values in the diagonal of K, to give more im-
portance to some of the measures. To obtain a final value for the entire method,
we propose to combine the values obtained for each class, using the number of
voxels of each class in the gold standard |Yc| as the weights:

G :=
∑

c Gc|Yc|∑
c |Yc|

(17)



(a) (b)

(c) (d)

Fig. 6. Joint similarity measures, JC vs JCd (a), JC vs JCi (b), CC vs JCi (c) and
BJC vs JCd (d)

We show in Fig. 7, the values for the global similarity measures per class and
for the whole segmentation, for the four different methods studied.

5 Conclusion and Future Works

The main contribution in this evaluation study is the combination of several fea-
tures to obtain the maximum reliability in the evaluation of several segmentation
methods. As far as we know, this is the first that multiple similarity measures
are combined to evaluate the accuracy of several segmentation methods. We
have shown that classic similarity measures such as JC, VS, TN and DS pro-
duce similar values that could arise in erroneous decisions. Therefore, we have
proposed a set of new similarity measures, using different criteria than the sizes
of volume overlapping. We propose a new measure based on the distances from
the misclassified voxels to the ground truth, then we propose to use the inten-
sity of the misclassified voxels, as well as the connectivity and the boundaries of
the segmented images. As a result we have proposed a new global multimodal
similarity measure that combines the similarity measures proposed.

We have also presented 2D plots of pairs of similarity measures that show
how the combination of several measures improves the visual representation of
the difference between several methods, and motivate the validity of the multi-
dimensional or multimodal global measure proposed here. Needless to say, the



(a) (b)

Fig. 7. Global similarity measures per class (a) and averaged (b)

coefficients of the matrix K should be selected appropriately for every applica-
tion in order to provide an objective global similarity measure.

The correspondence between visual inspection (see Fig. 2), and the numeric
values of our global measure fits quite well, resulting in a classification in order
of decreasing quality: GHMRF, SM, kNN and SMiLS. This is a natural result,
because GHMRF method is designed specifically for this particular application.
SM and kNN methods produce fairly good results, and the SMiLS method per-
forms also good, taking into account that it is not optimized for this task.

The brain classification study done here is not intensive, and it should be
considered as a good example of how our proposed evaluation method can be
applied. Notice also that new measures not related to accuracy, for instance, mea-
sures based on reproducibility, efficiency and user interaction, can be included
in our model, as proposed by Udupa [3].
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