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ABSTRACT

This paper introduces a ��� discrete, non-separable transform for im-
age processing, which can be regarded as a combination of the well
known Discrete Cosine Transform (DCT) with an analytically de-
rived quantization table that includes a compression ratio selection
parameter. A ��� deformable surface model is used to approximate
the image intensity and the introduced discrete transform is an in-
termediate step of the explicit surface deformation governing equa-
tions. The proposed transform is applied to lossy image compression
and the obtained results are compared to those of a DCT-based com-
pression scheme.

1. INTRODUCTION

Intensive research has been carried out during the last decades on
signal transforms. Transforms have been used in several signal and
image processing applications, such as enhancement, restoration, fil-
tering and data compression, the latter being perhaps the most impor-
tant application domain [1, 2].

The overall idea behind transform-based compression is to use
a transform that decorrelates the input signal and packs its total en-
ergy into few coefficients. The Karhunen-Loeve Transform (KLT)
[3] can be considered to be optimal for compression under certain
circumstances, i.e. for a Gaussian source at any bit rate and bit al-
location strategy. However, the computation of the KLT is compu-
tationally expensive and time consuming. Other transforms, such
as Discrete Cosine Transform (DCT), Discrete Fourier Transform
(DFT), Hadamard Transform, Slant Transform, which are compu-
tationally faster than the KLT, while exhibiting slightly worse per-
formance in terms of energy compaction and decorrelation, have
emerged. The transform that has been mostly used in image com-
pression, e.g. in various image/video compression standards, such
as JPEG (Joint Photographic Experts Group) [4], MPEG 1/2 (Mov-
ing Picture Experts Group) [5], H.261, and H.263, is DCT.

In this paper, we introduce a discrete transform which embeds
a compression ratio selection mechanism. The proposed transform
which will be referred to as Discrete Modal Transform (DMT), was
motivated by the technique presented in [6], which aims at analyz-
ing non-rigid object motion, with application to medical images. The
basic idea is to warp a ��� physics-based deformable surface model
onto the intensity surface of a target ��� image. We, then, utilize an
intermediate step of the deformation procedure to introduce a non-
separable ��� transform that can decompose the image into a number
of basis images. The resulting transform is proven to be a general-
ization of the DCT that includes an “embedded” quantization proce-
dure. More specifically, the proposed transform can be considered
as a combination of DCT with an analytically derived quantization

matrix that includes a compression selection parameter. The fact that
DCT can be derived starting from a deformable model that tries to
approximate the intensity surface of an image is a significant out-
come of this study.

The remainder of the paper is organized as follows. The ���
physics-based deformable surface model [6] is reviewed in Section
2 and the proposed transform is derived. Section 3 compares a lossy
image compression scheme based on the derived transform with a
DCT-based compression scheme. Conclusions are drawn in Section
4.

2. DERIVATION OF DISCRETE MODAL TRANSFORM
(DMT) FROM 3D PHYSICS-BASED DEFORMABLE

SURFACES
Let �	��

����� denote the intensity (grayscale value) of the pixel at po-
sition ��

����� on an image. By combining both the spatial ��

����� and
grayscale �	��

����� components of an image one can obtain a ��� sur-
face representation ( 

���	���	��

����� ) of the image [7] that will be sub-
sequently called intensity surface. An elastic ��� physics-based de-
formable model (Figure 1) [6] consisting of a mesh of connected
springs comprising of ����������� nodes (assumed to be equal to
the image height and width), can be used to model this surface.
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Fig. 1. The elastic ��� physics-based deformable model consisting
of ��������� nodes.

The deformable surface model is ruled by Lagrangian dynamics
[8]: �! "$#&%('*)"$#&%,+�"$# �*- # � (1)

where + is the stiffness matrix, " �/. u
¯ 0 �2131214� u¯ 576 8 is defined as

the vector comprising of the vectors of nodal displacements, and-9�:. f
¯ 0 �3121214� f¯ 5 6 8 is the external force vector comprising of the

external forces vectors applied to each node. The forces in this
vector have zero 
 and � components whereas their ; component
is taken to be equal to the Euclidean distance between the point



��

���	���	��

����� ) of the intensity surface and the corresponding node
of the model in its initial configuration ��

���	��<=� , i.e. equal to the in-
tensity �	��

����� of pixel ��

����� : >@?���

�����A�B>=C D�E 0GFH54I$JLK�M ? �*�	��

����� ,where >=C D�E 0GFH54I
JLK�M ? is defined as the ; component of the force vec-
tor f

¯
C D�E 0GFH54I$JLK in vector - .
Instead of finding directly the equilibrium solution of (1), one

can transform it by a basis change [9]:"$# �ONQP"$# � (2)

where N is a square nonsingular transformation matrix of order � to
be determined and P" # is referred to as the generalized displacements
vector. One effective way of choosing N is setting it equal to matrixR

whose entries are the eigenvectors S7T (called vibration modes) of
the generalized eigenproblem:+ SUT$�(V7WT � SUT�� (3)

"$# � R P"$# � 5YX45
Z=54I[ T X$0 P" #T SU\]1 (4)

Equation (4) is referred to as the modal superposition equation. P" #T
is the ^ -th component of P" # and V_T is the corresponding eigenvalue
(also called frequency).

A significant advantage of the formulations described so far,
is that the vibration modes (eigenvectors) S7T and the frequencies
(eigenvalues) V_T of a plane topology do not have to be computed us-
ing eigen-decomposition techniques but have an explicit formulation
[6]: V7W�� `��a`�b��c�dV7WC e3E 0GFH54I$J egf �� h k¯ikj�l�m n W jBo `�����$p % l�m n W jQo ` b�����qprp � (5)

where `�sut@<v�3w��2131214�x���qy,w�z , ` b s{t@<v�3w��3121214�x���{y,w�z andSU| M |�fx� `��a`�b��c�}S&C e3E 0GFH54I$J egf�����~�y,w@����� % ~Lb��_��. 121214��2� l o `��a�@~�y,w@���� �2� l o ` b �a�@~ b y(w@���� �212121 6 8 � (6)

where ~usut=w��g���3121214�x����z , ~ b sut=w��]���2121214�g����z and S&C e3E 0GFH54I
J egf����~{yBw@����� % ~ b � is the ����~{yBw@����� % ~ b � -th element of vectorS&C e3E 0GFH54I
J egf .We consider that no deformations occur along the 
 and � axes,
i.e., deformations occur only along the intensity ; axis, driven by the
intensity (grayscale value) of the image under examination. Thus,
for each component . P� D3� � P� K � � P� ? � 6 of vector �" in (4), we have P� D3� �P� K � ��< and �" is simplified to:�" ��. P� 0 �212131L� P� 5
Z�54I 6 8 � (7)

where P� T$� P� ? � .
In our case, where the initial and the final (desirable) deformable

surface states, i.e. the initial model configuration and the image in-
tensity surface, are known, it is assumed that a constant force load -
is applied to the surface model. Thus, equation (1) reduces to the fol-
lowing equilibrium governing equation that corresponds to the static
problem: +�" �*-=� (8)

or in the modal space: P+ P" � P-=� (9)

where P+ � R 8 + R and P- # � R 8 - # R , - # being the external force
vector.

In the new basis, equation (9) is simplified to the following
scalar equations: V7WT P� T$� P>@T�� (10)

where P>@T is the ; component of the ^ -th element of P- .
Using (4) and (10) it can be found that the deformations � D Kalong the intensity axis of the node of the deformable surface model

that corresponds to pixel ��

����� based on modal analysis for a plane
topology can be described by:� D K � 5
Z E 0[| XL� 54I

E 0[|�f XL� 5
Z[ T X$0 54I[e X$0 �	��^��a`����LT M e ��~A��~ b �$� (11)w��w % V W ��~A�x~ b ���2� � 5
ZT X$0 � 54Ie X$0 � WT M e ��~A��~ b � �4WD M K ��~A��~Lb��g�
where � D K is the ; component of vector " C D�E 0GFH54I
JLK and �	��^��a`��
is the image intensity of pixel ��^��G`�� . One can see that deformations
are directly related to the eigenvalues V W ��~A�x~ b � and the eigenvectorsS W ��~A��~ b � of the model.

The deformations " of the ��� deformable surface model can be
rewritten as: � D K � 5
Z E 0[| XL� 54I

E 0[|�f XL��� ��~A��~Lb����4WD M K ��~A��~Lb��g� (12)

where

� ��~A�x~LbH��� � 5
ZT X$0 � 54Ie X$0 �	��^��a`����LT M e ��~A�x~ b ���w % V W ��~A��~ b ���2� � 5
ZT X$0 � 54Ie X$0 � WT M e ��~A�x~ b � 1 (13)

Equation (12) is applied to each node ( ~A��~ b ) of the deformable sur-
face model independently.

The normalization factor � � 5
ZT X$0 � 54Ie X$0 � WT M e ��~A��~ b �G� in (13) can
be further analyzed [10]:5
Z[ T X$0 54I[e X$0 �4WT M e ��~A�x~LbH���*�L��~
�G�L��~LbH�g� (14)

where�L��~
�_��� ����~���<5 W ��~,���< ��~{sut@<v�3w��2121214�x��y(w�z=1 (15)

Thus, � ��~A��~ b � in (13) can be rewritten as:

� ��~A�x~LbH��� 5
Z
E 0[ T XL� 54I

E 0[e XL� �	��^��a`��G��| M |�fg��^��a`��g� (16)

��| M |�fg��^��a`���� �2� lU� |vC W T J$0GFW 5
Z �2� l7� | f C W e J$0GFW 54I �00GJ4�L� �H� �]�v r¡@¢��£ Z4¤ JL�H� �]�v $¡@¢ f��£ I ¤3¥ 0¦ § C | F § C |�f F � (17)

where ~u�¨<v�3w��212131L�g����y(w , ~ b �¨<v�3w��212131L�g���{y9w , ©�� h�ª« , ¬
being the stiffness of the springs (which have natural length ­ � ) that
form the surface model and i the mass of each node of the surface
model (Figure 1). When ¬ increases and/or i decreases, the surface
model tends to behave as a rigid one, thus the intensity surface model
can hardly deform. On the other hand, when i increases and/or ¬
decreases, the intensity surface model tends to be a fully deformable
one, meaning that each force affects only the node (mass), where it



is applied to. Equation (16) defines the proposed ��� Discrete Modal
Transform (DMT).

It is easy to show that the proposed Discrete Modal Transform
coefficients � � n � n b � are related with DCT coefficients ®¯��~A��~ b � as
follows:

� ��~A��~Lb��_� w° w % ©�� l�m n W � � |W 5
Z � % l�m n W � � |�fW 54I �L�²± ®¯��~A�x~LbH�g1
(18)

One can easily notice that when ©³��< , � ��~A��~ b �_�B®¯��~A�x~ b � . Thus,
we can claim, that the proposed transformation is a generalization
of the DCT that includes a compression ratio selection mechanism.
Indeed, the denominator of (18) plays a role similar to that of the
quantization matrix used in DCT-based coding in the JPEG stan-
dard. Therefore, DMT can be seen as a DCT combined with a
new analytically computed quantization matrix which includes the
parameter © that provides a physically meaningful compression ra-
tio/quantization selection mechanism.

The inverse Discrete Modal Transform is expressed as:

>
��^��G`���� 5
Z[| X$0 54I[|�f X$0 � ��~A�x~Lb��G´r| M |�fx��^��a`��g� (19)

where ^$��<v�3w��3121214�x���ryµw , `���<v�3w��2121214�x���³yµw and ´r| M |�fx��^��a`��is given by:´r| M |�fg��^��a`���� �2� lYo ~_�a�@^ % w@������ �2� lYo ~ b �a�]` % w@������ �w % © ° l�m n W � � |W 5
Z � % l�m n W � � | fW 54I �²±¶ �L��~
�G�L��~ b � 1 (20)

´r| M |�fx��^��a`�� comprise the basis images of the Discrete Modal Trans-
form.

The proposed transform, is linear, real and has excellent energy
compaction properties. Due to the factor that appears in the denom-
inator of (18), DMT is non-separable and non-orthonormal. How-
ever, the forward and inverse transform form an orthonormal trans-
form pair. The proofs of these properties are omitted due to lack of
space.

3. APPLICATION OF DMT TO IMAGE COMPRESSION
An application of the DMT to lossy image compression is presented
in this Section. The proposed transform is compared with DCT
(combined with appropriate quantization tables) in terms of com-
pression and quality of the compressed images. We chose to use
DCT, because of its close relation with the proposed transform and
because it is the most widely used transform in many image com-
pression algorithms e.g. in JPEG.

The first set of experiments dealt with the evaluation of the qual-
ity of the compressed images when DMT and DCT are applied to the
target images. To perform image compression, the same procedure
is used for both transforms. Both ��� transforms are applied to an
image, by using ·��¸· blocks. In order to discard high-frequency
details and achieve compression, the DCT output must be quantized.
In this experiment, the quantization table found in the Annex of the
JPEG standard [2], multiplied by a scaling coefficient ¹ to enable
variable compression, was used for all image blocks. No quantiza-
tion table was used for DMT, since the coefficient © along with the
scaling factor in the denominator of (18) essentially act as quanti-
zation coefficients. Once the frequency coefficients of DCT were
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Fig. 2. Image quality versus the percentage of non-zero coefficients
plots for different values of © and ¹ for DMT and DCT respectively,
for two test images (Lenna and an outdoor image): in plots (a),
(b) the image quality is measured in terms of PSNR and WPSNR
whereas in plots (c), (d) the total perceptual error of Watson metric
is used.

divided by the values of the quantization table, both the DMT and
DCT outputs were rounded to their closest integers. The frequency
components that either have a small coefficient or a large divisor in
the quantization table will likely round to zero. By sorting the fre-
quency components (e.g. zig-zag scanning), one will typically end
up with a run of zeros at the end of the coefficient vector, which
can be discarded for compression purposes. In order to acquire the
compressed image, first, the output for DCT is multiplied with the
quantization table and then, the inverse transforms are applied to the
frequency vectors, for both transforms.

The above procedure was applied to various images of different
sizes and content, facial images, studio images, images depicting hu-
mans, indoor and outdoor scenes etc. By varying the coefficients ©
and ¹ for DMT and DCT respectively, different levels of compres-
sion were achieved. In this experimental setup, compression was
measured as the percentage of non-zero frequency coefficients in the
compressed images. Plots of image quality versus the number of
non-zero frequency coefficients can be seen in Figure 2. The met-
rics used for comparing the results in terms of image quality were
the PSNR (peak signal-to-noise ratio) and the weighted PSNR (WP-
SNR) [11] between the original (initial) and the compressed (final)
image as well as the total perceptual error (TPE) of the Watson met-
ric [12].

Results prove that the DMT can achieve approximately the same
or better image quality at the same levels of compression. In general,
in this simple compression setup, the DMT achieves better image
quality than DCT for high compression levels (small percentage of
non-zero coefficients), whereas in low compression levels the two al-
gorithms perform almost the same. Analogous results were obtained
for other images.

In the second set of experiments, instead of using standard quan-
tization tables that are based on general experiments for DCT, a tech-
nique based on bit-rate control was exploited. More specifically, an
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Fig. 3. Image quality versus the compression ratio plots for differ-
ent values of © and ¹ for DMT and DCT respectively, for two test
images (Lenna and an outdoor image): in plots (a), (b) the image
quality is measured in terms of PSNR and WPSNR whereas in plots
(c), (d) the total perceptual error of Watson metric is used.

optimal bit allocation procedure, reviewed in [13], based on the sta-
tistical properties of an image was applied. The same procedure, as
in the previous experiments was used. The image was partitioned in·º�u· non-overlapping blocks and both transforms were applied to
each block. The DCT output was scaled by the quantization coeffi-
cients that were derived from the statistical properties of the image
using the bit allocation procedure in [13] and the selected bit rate.
Then, both DMT and DCT coefficients were rounded to their closest
integer and entropy coding [13] was performed. During the entropy
coding, DCT coefficients were ordered by using the zig-zag scan,
whereas the DMT coefficients were sorted in ascending order based
on the denominator (18):» �¼¬	�x­����¨w % ©µ½ l�m n W j9o ¬�����$p % l�m n W j¾o ­�����qp7¿ � (21)

where ��� , ��� are the dimensions of the ��� transform. The DMT
coefficients are divided by this term, thus, sorting based on this term
means that the coefficients which are divided with small values of

»
have larger information and must be kept and the coefficients which
are divided with large values of

»
may be discarded. In Figure 3,

the compression ratio-distortion curves for two test images are de-
picted. In the case of DMT, compression was controlled by varying© . In this experiment, compression ratio was measured as the num-
ber of bits in the original image divided by the number of bits in the
compressed image, after quantization and entropy coding, whereas
distortion was measured using PSNR, WPSNR and the total percep-
tual error of the Watson metric. One can see, that DMT achieves
in most cases, better image quality than DCT for high compression
ratios, while at lower compression ratios the two transforms have
almost the same performance. Similar results were obtained for all
other test images.

4. CONCLUSION

A novel ��� discrete, non-separable, signal transform was introduced
in this paper. The proposed transform results as an intermediate

step of the deformation procedure of a ��� physics-based deformable
model that deforms to adapt to the intensity surface of the image and
it was proven to be equivalent to DCT combined with a novel quan-
tization scheme that embeds a compression ratio selection mecha-
nism. We applied the proposed transform to lossy image compres-
sion and compared it with DCT, since DCT is widely used in im-
age compression. The results show that the proposed transform can
achieve comparable or better image quality to DCT (quantized by the
quantization tables of JPEG, or quantization tables derived from an
optimal bit allocation procedure) at the same level of compression.
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