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Abstract

In this paper two image representation approaches
called non-negative matrix factorization (NMF) and local
non-negative matrix factorization (LNMF) have been ap-
plied to two facial databases for recognizing six basic fa-
cial expressions. A principal component analysis (PCA) ap-
proach was performed as well for facial expression recog-
nition for comparison purposes. We found that, for the first
database, LNMF outperforms both PCA and NMF, while
NMF produces the poorest recognition performance. Re-
sults are approximately the same for the second database,
with slightly performance improvement on behalf of NMF.

1. Introduction

Is the perception of the whole image based on perception
of its parts or it is viewed as an holistic process ? Despite the
huge amount of psychological research done in this respect,
there is no general consensus in answering these questions.
Rather, the answer to the problem of how the visual cor-
tex understands complex objects, and, in particular human
faces, is a controversial one. Wachsmuth et. al [15] have
drawn psychological and physiological evidence for parts-
based objects representations in the brain. Biederman came
up with the theory of recognition-by-components (RBC)
[2]. Regarding the face recognition, which is a particular
case of object recognition, Farah et al. [9] found that the
features used to recognize faces are “holistic” in nature. As
far as computer vision researchers are concerned, the same
questions hold in attempting to create an automatic human
face analyzer (facial identification/facial expression recog-
nition). While some researchers found suitable to follow
holistic approaches for facial expressions recognition [4],
by employing approaches as principal components analy-
sis (PCA) and Fisher linear discriminant (FLD), other re-

searchers state that local or parts-based human face repre-
sentation performs better than holistic representations. Sev-
eral holistic and local representation methods have been
studied and applied to classify facial actions units by Do-
nato et. al [8]. Best recognition results have been reported
by using ICA and Gabor filters.

Furthermore, it is still unclear whether different face pro-
cessing tasks require different types of processing, as ex-
pressed in [3] and [6]. For example, there is some evidence
that face recognition and facial expression recognition are
two tasks that rely on different representations and process-
ing mechanisms. This conclusion is drawn based on the
dissociation between these two process found in brain dam-
aged patients, leading to the hypothesis that there may be
multiple representations of faces in the visual cortex.

Another two part-based image representation such as
NMF and LNMF first introduced by Lee et. al [11] and
Li et al. [12], respectively, have been already applied for
face representation and recognition. Li et al. found that,
while NMF representation yields low recognition accuracy
(actually lower than the one that can be obtained by using
the PCA method), LNMF leads to better classification per-
formance than PCA. Chen et al. [5] successfully applied
LNMF for face detection. NMF and LNMF have not been
applied so far for facial expression recognition.

2. PCA, NMF and LNMF

The six basic facial expressions plus the neutral pose
form seven classes. Each imageX must be assigned
to a facial expression classL and get a labell(X) ∈
{1, . . . , 7}. Let us assume that the training face images are
{X1,X2, . . . ,XN}, taking values in ann-dimensional fea-
ture space (i.e.X ∈ <n). Once the system is trained and
we present it a new imageXtest it should produce the cor-
rect facial expression labell(Xtest). Principal component
analysis uses a linear dimensionality reduction transforma-



tion that maximizes the scatter of all projected images and
decomposes the images in terms of basis images (eigenim-
ages) [1]. The average face isΨ = 1

N

∑N
k=1 Xk, and the

variation of each face from the average isΦk = Xk −Ψ.
Then, the eigenvectorsW ∈ <n×m of the total scatter ma-
trix ST =

∑N
k=1 ΦkΦT

k are a set of eigenfaces withm < n.
Each training face imageXk can be projected to the eigen-
facesΩk = WT (Xk − Ψ) forming a new feature vector
Ωk ∈ <m. The original images can be reconstructed as lin-
ear combinations of the basis imagesW asXrec = WΩ.
The entries ofW andΩ are of arbitrary sign.

Contrary to PCA, non-negative matrix factorization
(NMF) does not allow negative entries in the matrix factors
W andΩ [11]. The non-negative constraints are imposed
to be consistent with the neurophysiological fact that the
neural firing rate is non-negative. NMF attempts to find an
approximate factorization forXrec ≈ X that minimizes the
divergence D betweenX andXrec subject toW,Ω ≥ 0
and

∑n
j=1 wjk = 1, ∀k [11]. The cost function D to be

minimized is given explicitly by:

D(X||Xrec) =
∑

j,k

(
xjk log

xjk

xrec
jk

− xjk + xrec
jk

)
(1)

The cost function can be minimized through an iterative
process by applying an auxiliary function similar to that
used in the EM algorithm [7]. When the minimum is found,
the basis imagesW should contain parts-based image fea-
tures.

Local non-negative matrix factorization (LNMF) has
been developed by Li et al [12]. This technique is a ver-
sion of NMF which imposes more constraints on the cost
function related to spatial locality. Therefore, the locality
of the learned features from the image is improved by im-
posing these additional constraints. The new cost function
is now:

D(X||Xrec) =
∑

j,k

(
xjk log

xjk

xrec
jk

− xjk + xrec
jk

)
+

+α
∑

jk

ujk − β
∑

j

vjj

(2)

where [ujk] = U = WT W, [vjk] = V = ΩΩT and
α, β > 0 are constants. Therefore, the new function
has to be minimized subject to three additional issues: 1)
min

∑
j ujj , 2)min

∑
j 6=k ujk and 3)max

∑
j vjj . A so-

lution for the minimization of relation (2) can be found in
[12].

3 Facial expressions classification

The experiments have been performed using two
databases. The first database we used for our experiments

contains 213 images of Japanese female facial expression
(JAFFE) [13]. A second database has been derived from
Cohn-Kanade AU-coded facial expression database [10]
and the facial action (action units) have been converted
into emotions according to [14]. A number of 234 images
was used. Each original image has been aligned with re-
spect to its upper left corner. We aligned the images, since
this preprocessing step is critical in achieving good classi-
fier performance for PCA. Each original image from both
databases is cropped and downsamped in a such way that
the final image size is 40× 30 pixels.

In the classical classification problem, we construct a
classifier where the output (predicted value) of the clas-
sifier for a test sampleΩtest is pj . SinceX = WΩ,
the feature vectors used for classification are formed as
Ω = W−1(X − Ψ). A new test feature vectorΩtest is
then formed asΩtest = W−1(Xtest − Ψ). The classi-
fier accuracy is defined as the percentage of the correctly
classified images when{l(Ωtest) = p(Ωtest)}. Once we
have formed 7 classes of new feature vectors (or prototype
samples) a nearest neighbor classifier is employed to clas-
sify the new test sample, by using the following similarity
measures:

1. Cosine similarity measure(CSM). This approach is
based on the nearest neighbor rule and uses as similar-
ity the angle between a test feature vector and a proto-
type one. We chooseCSM = argminj∈Lj

{dj}, where

dj = ΩtestΩ
T
j

‖Ωtest‖‖Ωj‖ anddj is the cosine of the angle between
a test feature vectorΩtest and the prototype oneΩj .

2. Maximum correlation classifier(MCC). The sec-
ond classifier is a minimum Euclidean distance classifier.
The Euclidean distance fromΩtest to Ωj is expressed
as‖Ωtest − Ωj‖2 = −2hj(Ωtest) + ΩtestΩT

test, where
hj(Ωtest) = ΩjΩT

test − 1
2‖Ωj‖2 is a linear discriminant

function ofΩtest. A test image is classified by this classi-
fier by computing seven linear discriminant functions and
choosingMCC = argmaxj∈Lj

{hj(Ωtest)}.
The classifier accuracy is measured by forming a train-

ing and a test set from the database and by applying the
classification procedure. To form the training set a number
of 164 and150 samples were randomly chosen from Cohn-
Kanade derived database and JAFFE database, respectively.
The remaining samples were used for testing. The classi-
fication accuracy for the Cohn-Kanade database and both
classifiers are presented in Figures 1 and 2 in percentage
form, as function of the number of basis components. For
this database the highest accuracy is achieved by LNMF
with 81.42% corresponding to 36 basis and when MCC is
applied. LNMF clearly outperforms NMF for each number
of basis components and for both CSM and MCC classi-
fiers. The results for JAFFE database are much worse for
the all three methods as compared to Cohn-Kanade database
as can be seen from Figures 3 and 4. This is caused by the



fact that the expressers posing for this database are not as
expressive as those from Cohn-Kanade, making this way
the expressions harder to be classified. As the number of
basis increases, NMF outperforms both LNMF and PCA
when CSM is applied. For MCC, the accuracy variation in
the case of NMF is not as smooth as that of CSM. NMF
does not outperforms the other two methods which per-
forms equally the same as it can be seen from Figure 4.
In order to increase the classifier accuracy for this database,
for each subject we have subtracted each expression image
from its corresponding neutral pose, thus obtaining differ-
ence images and the experiments were repeated. The accu-
racy for this case is presented in Figures 5 and 6 for CSM
and MCC, respectively. By running the experiments on dif-
ference images, the accuracy was significantly improved up
to91% and89.28% for PCA and LNMF, while the accuracy
gets worse for NMF, the highest value obtained by it being
of only69.64% achieved at the largest number of basis com-
ponents. Unfortunately, in many practical cases we do not
possess a neutral image to take the difference. Furthermore,
image registration should be used before difference calcu-
lation.
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Figure 1. Accuracy for CK database and CSM
classifier.

4 Conclusion

Two methods (NMF and LNMF) for extracting facial
features from two images database representing facial ex-
pressions and two classifiers (CSM and MCC) for recog-
nizing these expressions were investigated in this paper. As
a baseline, PCA was employed as well. LNMF clearly
outperforms NMF for Cohn-Kanade database and JAFFE
difference images whilst, in the case of Cohn-Kanade, its
performance is superior to PCA. For JAFFE, LNMF and
PCA performs approximately the same. The only case when
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Figure 2. Accuracy for CK database and MCC
classifier.
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Figure 3. Accuracy for JAFFE database (with
neutral pose) and CSM classifier.

NMF behaves better than PCA and LNMF is for the JAFFE
database including neutral pose and for CSM, but it needs
the maximum basis components to achieve the highest value
of accuracy. As far as the classifier is concerned, overall,
we found CSM more reliable than MCC, yielding a higher
recognition accuracy.
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Figure 4. Accuracy for JAFFE database (with
neutral pose) and MCC classifier.
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Figure 5. Accuracy for JAFFE database (dif-
ference images) and CSM classifier.
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