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ABSTRACT
The paper proposes the application of majority voting on the out-
put of several support vector machines in order to select the most
suitable learning machine for frontal face detection. The first ex-
perimental results indicate a significant reduction of the rate of
false positive patterns.

1. INTRODUCTION

Face detection is a prerequisite task in many applications includ-
ing face recognition, teleconferencing, and face gesture recogni-
tion. The human face plays a central role in intelligent human
computer interaction. The goal of face detection is to determine if
there are any human faces in a test image or not. If a face exists,
the objective is then to locate it in the test image regardless of the
actual position, orientation, scale and pose of the head as well as
the lighting variations. Due to the many above mentioned variable
factors, developing a robust human face detector is a hard task.

Many approaches have been proposed for face detection. For
instance, Yang and Huang have developed a system that attempts
to detect a facial region at a coarse resolution and subsequently
to validate the outcome by detecting facial features at the next
resolution by employing a hierarchical knowledge-based pattern
recognition system [1]. A probabilistic method to detect human
faces using a mixture of factor analyzers has been proposed in [2].
Other techniques include neural networks [3], or algorithms where
feature points are detected using spatial filters and then grouped
into face candidates using geometric and gray level constrains [4].
Sung and Poggio report an example based-learning approach [5].
They model the distribution of human face patterns by means of
few view-based face and non-face prototype clusters. A small
window is moved over all portions on an image and determines
whether a face exists in each window based on distance metrics.
The application of Support Vector Machines (SVMs) in frontal
face detection was first proposed in [6].

In several papers, false positive patterns are collected and are
fed to the learning machine at the next iteration of the training pro-
cedure, a procedure that resembles bootstrap [5]. An alternative
approach is proposed in this paper. More specifically, we propose
to rank an ensemble of SVMs trained on the same training set by
combining their outputs with majority voting in the decision mak-
ing process. By doing so, we can define the most efficient SVM,
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i.e., that whose outputs appear most frequently in the set of the
outputs produced by the ensemble of SVMs. We apply this tech-
nique to frontal face detection and report a significant reduction of
rate of false positive patterns. Also, we apply bagging technique
to each SVM and compare the results with the approach described
in the paper.

The outline of the paper is as follows. A brief description of
SVMs is presented in Section 2. The proposed method is de-
scribed in Section 3 followed by a briefly presentation of bagging
approach in Section 4. Experimental results are reported in Sec-
tion 5 and conclusions are drawn in Section 6.

2. SUPPORT VECTOR MACHINES

SVMs is a state-of-the-art pattern recognition technique whose
foundations stem from statistical learning theory [7]. However,
the scope of SVMs is beyond pattern recognition, because they can
handle also another two learning problems, i.e., regression estima-
tion and density estimation. In the context of pattern recognition,
the main objective is to find the optimal separating hyperplane, that
is, the hyperplane that separates the positive and negative examples
with maximal margin. SVM is a general algorithm based on guar-
anteed risk bounds of statistical learning theory, i.e., the so-called
structural risk minimizationprinciple. This principle is based on
the fact that the error rate of learning machine on test data (i.e.,
the generalization error rate) is bounded by the sum of the train-
ing error rate and a term that depends on the Vapnik-Chervonenkis
(VC) dimension [7]. We briefly describe linearly separable case
followed by linearly non-separable case and the nonlinear one.

Consider the training data setS = {(xi, yi)}l
i=1 of labeled

training patterns, wherexi ∈ IRd with d denoting the dimension-
ality of the training patterns, andyi ∈ {−1, +1}. We claim thatS
is linearly separable if for somew ∈ IRd andb ∈ IR,

yi(w
T xi + b) ≥ 1, for i = 1, 2, . . . , l (1)

wherew is the normal vector to the separating hyperplanewT x+
b = 0 andb is a bias (or offset) term [8]. The optimal separating
hyperplane is the solution of the following quadratic problem:

minimize
1

2
wT w

subject to yi(w
T xi + b) ≥ 1, i = 1, 2, . . . , l (2)

In Figure 1 the optimal separating hyperplane is drawn in the case



Fig. 1. Optimal separating hyperplane in the case of linearly sepa-
rable data. Support vectors are circled.

of linearly separable data. The optimalw∗ is given by

w∗ =

l∑
i=1

λ∗i yixi (3)

where�∗ is the vector of Lagrance multipliers obtained as the so-
lution of the so-called Wolfe-dual problem

maximize
l∑

i=1

λi − �T D�

subject to
l∑

i=1

yiλi = 0

λi ≥ 0 (4)

whereD is anl × l matrix having elementsDij = yiyix
T
i xj .

Thusw∗ is a linear combination of the training patternsxi for
which λ∗i > 0. These training patterns are calledsupport vectors.
Given a pair of support vectors(x∗(1),x∗(−1)) that belong to the
positive and negative patterns, the bias term is found by [7]

b∗ =
1

2

[
w∗T

x∗(1) + w∗T

x∗(−1)
]

. (5)

The decision rule implemented by the SVM is simply

f(x) = sign
(
w∗T

x− b∗
)

. (6)

If the training setS is not linearly separable, the optimization
problem (4) is generalized to

minimize
1

2
wT w + C

l∑
i=1

ξi

subject to yi(w
T xi + b) ≥ 1− ξi, i = 1, 2, . . . , l

ξi ≥ 0 (7)

whereξi are positive slack variables [8], andC is a parameter
which penalizes the errors. The situation is summarized schemati-
cally in Fig 2. The Lagrange multipliers now satisfy the inequali-
ties

0 ≤ λi ≤ C. (8)

The main difference is that support vectors do not necessarily lie
on the margin.

Fig. 2. Separating hyperplane for non-separable data. Support
vectors are circled.

Finally, SVMs can also provide nonlinear separating surfaces
by projecting the data to a high dimensional feature spaceH in
which a linear hyperplane is searched for separating all the pro-
jected data,φ : IRd −→ H. If the inner product in spaceH had
an equivalent kernel in the input spaceIRd, i.e.:

φT (xi)φ(xj) = K(xi,xj) (9)

the inner product would not need to be evaluated in the feature
space, thus avoiding the curse of dimensionality problem. In such
a case,Dij = yiyiK(xi,xj) and the decision rule implemented
by the nonlinear SVM is given by

f(x) = sign




l∑
i=1

λ∗
i
6=0

λ∗i yi K(x,xi)− b∗


 . (10)

3. APPLICATION OF MAJORITY VOTING IN THE
OUTPUT OF SEVERAL SVMS

Let us consider five different SVMs defined by the kernels indi-
cated in Table 1. The following kernels have been used: (1)
Polynomial withq equal to2; (2) Gaussian Radial Basis Func-
tion (GRBF) withσ = 10; (3) Sigmoid withκ equal to0.5 andθ
equal to0.2; (4) Exponential Radial Basis Function havingσ equal
to 10. The penalty,C, in (7)was set up to500. In Table 1,|| · ||p

Table 1. Kernel functions used in SVMs.

k SVM type Kernel function
K(x,y)

1 Linear xT y

2 Polynomial (xT y + 1)q

3 GRBF exp(− ||x−y||22
2σ2 )

4 Sigmoid tanh(κ · xT y − θ)

5 ERBF exp(− ||x−y||1
2σ2 )

denotes the vectorp-norm,p = 1, 2. For brevity, we index each
SVMs byk, k = 1, 2, . . . , 5. To distinguish between training and
test patterns, the latter ones are denoted byzj . LetZk be the set
of test patterns classified as face patterns by thekth SVM during



the test phase, i.e.,

Zk = {zj : fk(zj) = 1}, k = 1, 2, . . . , 5. (11)

Let Z = ∪5
k=1Zk. We define the histogram of labels assigned to

all zj ∈ Z as

h(zj) = #{fk(zj) = 1, k = 1, 2, . . . , 5} (12)

where# denotes the set cardinality. We combine the decisions
taken separately by the SVMs indexed byk = 1, 2, . . . , 5 as fol-
lows:

g(zi) =

{
1 if i = arg maxj{h(zj)}
0 otherwise.

(13)

Let us define the quantities:

Fk = #{fk(zj) = 1, zj ∈ Zk}
Gk = #{g(zj) = 1, zj ∈ Zk} (14)

To determine the best SVM, we simply choose

m = arg max
k
{Gk

Fk
}. (15)

4. BAGGING APPROACH

Bagging is a method for improving the prediction error of classi-
fier learning system by generating replicated bootstrap samples of
the original training set [9]. Given a training set described in Sec-
tion 2 aS? bootstrap replicate of it is built by takingl samples
with replacement from the original training setS. The learning
algorithm is then applied to this new training set. This procedure
is appliedB times yieldingS?1,. . . , S?B . Finally, thoseB new
models are aggregating by uniform voting and the resulting class
is that one having the most votes over the replicas. Notice that in
the bootstrap replica an original pattern may not appear on it while
others may appear more than once, on average63% of he original
patterns appearing in the bootstrap replica.

5. EXPERIMENTAL RESULTS

For all experiments the Matlab SVM toolbox developed by Steve
Gunn was used [10]. For a complete test, several auxiliary routines
have been added to the original toolbox.

5.1. Data set and pattern extraction

A training data set of 96 images, 48 images containing a face and
another 48 images with non-face patterns, is built. The images
containing face patterns have been derived from the face database
of IBERMATICA where several sources of degradation are mod-
eled, such as varying face size and position and changes in illu-
mination. All images in this database are recorded in 256 grey
levels and they are of dimensions 320× 240. These face images
correspond to 12 different persons. For each person four differ-
ent frontal images have been collected. The procedure for col-
lecting face patterns is as follows. From each image a bounding
rectangle of dimensions 160× 128 pixels has been manually de-
termined that includes the actual face. The face region included in
the bounding rectangle has been subsampled four times. At each
subsampling, non-overlapping regions of2× 2 pixels are replaced
by their average. Accordingly, training patternsxi of dimensions

10× 8 are built. The ground truth, that is, the class labelyi = +1
has been appended to each pattern. Similarly,48 non-face patterns
have been collected from images depicting trees, wheels, bubbles,
and so on, by subsampling four times randomly selected regions
of dimensions160× 128. The latter patterns have been labeled by
yi = −1.

5.2. Performance assessment

We have trained the five different SVMs indicated in Table 1. The
trained SVMs have been applied to six face images from the IBER-
MATICA database that have not been included in the training set.
Each test image corresponds to a different person. The resolution
of each test image has been reduced four times yielding a final
image of dimensions15 × 20. Scanning row by row the reduced
resolution image, by a rectangular window10 × 8, test patterns
are classified as non-face ones (i.e.,f(z) = −1) or face patterns
(i.e., f(z) = 1). When a face pattern is found by the machine, a
rectangle is drawn, locating the face in image.

We have tabulated the ratioGk/Fk in Table 2. From Table 2,

Table 2. RatioGk/Fk achieved by the various SVMs.

SVM type Test Image numbers
k 1 2 3 4 5 6
1 0.83 0.20 0.57 0.66 1 0.74
2 0.52 0.28 0.57 0.44 1 0.71
3 0.67 0.25 0.44 0.44 0.80 0.83
4 0.64 0.14 0.15 0.11 0.22 0.13
5 1 0.50 0.80 0.80 0.80 1

it can be seen that ERBF is found to maximize the ratio in (15)
for the five test images. On the contrary the machine built using
the sigmoid kernel attains the worst performance with respect to
(15). Interestingly, the ERBF machine experimentally yields the
greatest number of support vectors, as can be seen in Table 3.

Table 3. Number of support vectors found in the training of the
several SVMs studied.

SVM type Test Image numbers
k 1 2 3 4 5 6
1 11 11 11 11 10 11
2 14 13 14 14 14 13
3 12 10 12 16 12 12
4 13 11 11 11 11 11
5 39 41 41 40 39 40

To assess the performance of the majority voting procedure,
we have manually annotated each test patternzi with the ground
truth that is denoted aszi,81. Two quantitative measurements have
been used for the assessment of the performance of each SVM,
namely, thefalse acceptance rate(FAR) (i.e., the rate of false pos-
itives) and thefalse rejection rate(FRR) (i.e., the rate of false neg-
atives) during the test phase. We have measured FAR and FRR
for each SVM individually as well as after majority voting. We
have found that FRR is always zero while FAR varies. For each of



the five different SVM we used bagging. The number of bootstrap
replicas was21. Unfortunately, for this set of data, the method did
not work well. Moreover, perturbing the distribution of the orig-
inal data bagging slightly degrades the performance of the initial
classifier. The values of FAR attained by each SVM individually
and after applying majority voting along with the values obtained
with bagging are shown in Table 4. The FAR after bagging are in
parentheses. It is seen that application of majority voting reduces

Table 4. False acceptance rate (in%) achieved by the various
SVMs individually, with bagging and after applying majority vot-
ing. In parentheses are the values corresponding to bagging

SVM type Test Image numbers
k 1 2 3 4 5 6
1 3.9 10.5 6.5 5.2 2.6 6.5

(4.7) (12.1) (7.6) (6.5) (3.5) (7.8)
2 6.5 6.5 6.5 9.2 2.6 6.5

(10.1) (9.3) (7.6) (9.2) (3.5) (10.8)
3 5.2 7.8 9.2 9.2 3.9 5.2

(7.7) (10.1) (10.6) (13.5) (4.5) (8.8)
4 7.8 17.1 31.5 44.7 21.0 47.3

(23.7) (29.2) (44.6) (78.5) (46.5) (88.8)
5 2.6 2.6 3.9 3.9 3.9 3.9

(2.6) (3.1) (6.5) (6.5) (4.5) (4.8)
combining 2.6 1.3 2.6 2.6 2.6 3.9

the number of false positives in all cases and particularly when
Fk 6= Gk.

Figure 3 depicts 2 extreme cases observed during a test. It is
seen that majority voting helps to discard many of the candidate
face regions returned by a single SVM (Fig. 3(b)) yielding the best
face localization (Fig. 3(a)).

(a) (b)

Fig. 3. (a) Best and (b) worst face location determined during a
test.

6. CONCLUSIONS AND DISCUSSION

In this paper, we have attempted to improve the accuracy of SVMs
by applying majority voting on the output of an ensemble of dif-
ferent machines. We have tested the aforementioned technique for
frontal face detection. We also used bagging in the trial to re-
duce the misclassification error and compared the results with the

method proposed in this paper. Note that the majority vote is re-
lated to each SVM in the case of bagging while it is applied to
different SVM’s in the case of the ensemble of SVM’s. Ensem-
bling different kernel machines turns out to be a better idea than
using bagging for achieving more accurate classifier.
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