Global Gabor features for rotation invariant object classification
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Abstract ing, for instance, due to viewpoint, illumination, or occlu-

sions, but, at the same time, the system should maintain
The human visual system can rapidly and accurately specificity, i.e., the ability to discriminate between different
recognize a large number of various objects in cluttered buildings. These complex constraints are taken into account
scenes under widely varying and difficult viewing condi- when complex artificial object recognition systems are built.
tions, such as illuminations changing, occlusion, scaling or To date, there is no universal accepted computer based ob-
rotation. One of the state-of-the-art feature extraction tech- ject recognition system which satisfactory copes with all the
nigues used in image recognition and processing is based orabove mentioned requirements.
the Gabor wavelet model. This paper deals with the appli-
cation of the aforementioned model for object classification -
. o o puter vision research for the last decades, plenty of works
task with respect to the rotation issue. Three training sam- : . )
. . , in the field has been reported in the literature. Although
ple sizes were applied to assess the method’s performance, . . . . .
. it is impossible to exhaustively mention all methods and
Experiments ran on the COIL - 100 database show the ro- . )
. approaches proposed to deal with this task, some of them
bustness of the Gabor approach when globally applied to e Lo .
S are worth mentioning. Lighting-invariant approaches have
extract relevant discriminative features. The method out- : . ;
. ) been developed by Lowe [1], and Mikolajczyk and Schmid
performs other state-of-the-art techniques compared in the

paper such as, principal component analysis (PCA) or lin- [2]'. In the former, the aL!thor_proposed a local image d_e-
ear discriminant analysis (LDA). scriptor based on scale invariant feature transform which

utilized an orientation histogram using a Gaussian weighted
window. Mikolajczyk and Schmid introduce affine invariant
points where a Harris detector is used. Viewpoint-invariant
image representation has been developed by Huttenlocher
et al. [3] who made use of Hausdorff distance for finding
Despite the ease with which the biological visual sys- image similarity. Another viewpoint invariance recognition
tem performs object recognition, this is a very complex method has been more recently proposed by Rothganger et
computational task, requiring a quantitative trade-off be- al. [4], where multi-view constraints are associated with
tween invariance to certain object transformations on the groups of patches for 3D object recognition. A shape model
one hand, and specificity for individual objects on the other. which both segments and recognize objects was proposed
For instance, object recognition ought to be invariant acrosshy Leibe et al. [5]. However, their approach relies on a
huge variations in the appearance of objects such as buildprobabilistic principle which can be crucially affected by

As the object recognition has been at the heart of com-

1. Introduction



combines support vector machines with local features via =k
a new class of Mercer kernels for performing scalar prod-
ucts on feature vectors consisting of local descriptors, com-
puted around interest points (like corners). A same strategy
was employed by Caputo and Dérk7] which combine
color and shape information, retrieved by kernel features,
for amore robust object recognition accuracy (appliedtothe  Figure 1. 100 objects from the COIL-100
COIL-100 database). Several local descriptors (including database, each taken at frontal view, i.e. zero
Gaussian and Laplacian filters) are analyzed for the same pose angle.

COIL-100 database in [8]. However, no object recognition

performance or comparison were reported for any of these

local descriptors.
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A particular approach for extracting relevant features is
given by the so-called “elastic graph matching” [9], and its ~ The outline of the paper is as follows. A short descrip-
relative, named‘elastic bunch graph matching” [10], which tion of the database involved in experiments is presented in
have been successfully applied for face recognition. "Elas- Section 2. Next, Section 3 shortly describes the Gabor
tic bunch graph matching” is based on applying a set of Ga- functions, along with their convolution process and the new
bor filters to special representative landmarks on the facevector formation methodology. Experimental results are re-
(corners of the eyes and mouth, the contour of the face).ported in Section 4 and conclusions are drawn in Section
These filters named Gabor jets represent the multiscale nab.
ture of receptive fields, as each component has a unique
combination of orientation, frequency tuning and scale. The
face is represented by a list of values that comprise the L
amount of contrast energy that is present at spatial frequen2- Database description
cies, orientations and scales included in the jet. For the ob-
ject recognition task, similar Gabor filters have been used

by Wirtz [11] to extract local features that are robust to e columbia Object Image Library (COIL-100)

translations, deformations, and background changes. database [14] comprising color images of 100 objects has
Most of the aforementioned papers, including Gabor been chosen for the experimental part. The object images
methods, rely on manually or automatically selected local were taken at pose intervals of 5 degrees, resulting 72 poses
features which are extensively used for categorizing objectsper object, summing 7200 samples. Figure 1 shows the im-
in current systems. While such approaches are reasonablyages of the 100 objects at frontal view. Each color image
successful in cases when the set of categories is rather limis converted to a gray-scale image and sampled down to
ited, it is clear that in more complex situations some struc- 32 x 32 pixels to reduce the computational load. The train-
turing of the features is unavoidable. Moreover, one draw- ing set was formed by selecting each fourth sample (cor-
back of these feature extraction techniques is the manual antesponding to each object), starting with the first one (zero
notation of landmarks when the Gabor filters are applied to angle pose). More precisely, images corresponding to view
specific localized points. For large databases this annotatiorangle of 0°,20°, 40°,...,320° and 340°, are picked up,
may become prohibited. Even when automatic annotation isyielding thus, 18 samples for each object. The training set,
carried out, the general performance is very sensitive to thedenoted byX*"¢""9 comprises then 1800 samples. The
registration and annotation precision. To avoid the short- remaining 5400 images form the test set, denoteXBy?.
comings of the local object descriptors we propose here aFor the sake of brevity we shall call this tet 1 We fur-
global image representation based on the Gabor waveletsther construct two more sets by selecting each eight sam-
The Gabor wavelets are applied to the whole image insteadple, and each twelfth sample, respectively, (for each object)
of choosing image patches. The experiments were run withfrom the database to form the training set, with the remain-
respect to the rotation issue and revealed an excellent being samples included in the test set. Therefore, the second
havior of the global Gabor features for classifying objects training set, name8et 2contains 8 samples for each object
compared to other two state-of-the-art methods named PCA(800 training samples), whilst the third sBgt 3 comprises
[12] and LDA [13] (chosen as baseline), on the COIL-100 only 6 samples/object (with a total of 600 training samples).
database. Three different sizes were chosen for the trainingAs less samples are included in the training set we can have
data to investigate its robustness with respect to the rotationan insight on how robust are the approaches against the ro-
issue. tation degree for all methods investigated in the paper.



3. Gabor wavelets and feature vector forma-
tion

Gabor wavelets (filters or functions) are based on physi-
ological studies of simple cells in the human visual cortex.
The cells are selectively tuned to orientation as well as spa-
tial frequency, and their response can be accurately enough
approximated by 2D Gabor filters [15]. Thus, the increased
popularity of this approach is biologically well justified. A
2D Gabor wavelet transform is defined as the convolution
of the imageZ(z):

J(z) = //I(Z/)wk(z —2')dz' @) Figure 2. The 8th object from Figure 1, repre-
senting a car sampled down to 32 x 32 reso-
with a family of Gabor filters [10]: lution.
K7k k7k e o2
Ui (z) = ?exp(fﬁz z) (exp(zk z)exp(2)>,
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wherez = (z,y) andk is the characteristic wave vector:

k = (k,cosp, k,,sirv,ou)T ©) representation, because it vari_es sIO\_/va with the positiop,
while the phase is very sensitive to it. The procedure is
with applied to bothX!reining gndX?est, PCA and LDA is also
applied to X/ *"ing py computing the eigenimages for

V2 m
k, = 2‘%27r, Op=pz 4) various number of principal components (PCs), i.e., BCs

- gﬁ {5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110120, 130, 140}.
v=0,1,2,3,4, un=0, 121 The PCA feature vectors used for classification are formed

asFoems — WTXirening where X7%ing is zero
The parameters andy define the frequency and orien- mean training samples, an@ denotes the eigenimage

tation of the filter. Four orientations @, 7, 3{{ areused in  matrix. A new test feature vectd¥<s! is then formed as

our experiments. Two frequency ranges, i.e., high frequen-fisf, = WTx's? wherex'**! is a zero mean test sample.

cies (hfr) withv = 0,1,2 and low frequencies (Ifr) with = We should notice that, while the PCA and LDA involve a
2,3,4 are also considered. Figure 2 depicts the 8th objectiearning process to extract the relevant statistical (for PCA)
from Figure 1 representing a car sampled dowf2Zo< 32 and discriminant features (for LDA), the “learning” term

resolution. The magnitude for the Gabor high frequency for Gabor is somehow inappropriate, as the Gabor filter
range convolution result corresponding to the car image isparameters are tuned by “by hand”.
shown in Figure 3, while Figure 4 illustrates the low fre-

quency case. The 100 objects form the sét=(J; %) £;, whereL; is
a class that corresponds to a particular object. The recog-
4. Experimental Results nition rate is defined a®R = #{p(ciest) = l(Crest)},

wherel(cest) is the ground truth fok.;, andp(ces: IS

the predicted value of the classifier. Once Gabor features
are extracted and the new feature vector is formed for all
three procedures, as described above, two classifiers are em-
ployed to classify a test object image:

Each 32x 32 image has been convolved with 12 Gabor
filters corresponding to high frequency range and the four
orientations, downsampled further by a factor of two,
resulting an image of 1& 16 pixels and scanned row by
row to form a vector of dimension 256 1 for each Gabor

filter. The 12 outputs have been concatenated to form a 1+ Cosine similarity measur§CSM). This approach is

novel longer feature vector of dimension 3072L. Hence based on the nearest neighbor rule and uses as similarity the
. . ini . - ' i ragning

the final matnxX‘g(‘jg’Of"g is 3072 x nireining where the angle between a test vector and a training onex@é’l‘

training feature vectors have been stored in the columns of(in the case of Gabor) be a column vectodgf; ;" that

X&eming - The same procedure has been applied for thecorresponds to the nearest cléss Let aI30xjC be the near-

low frequency range. We took only the magnitude of Gabor estEjC class neighbor column vector for a test coefficient
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Figure 3. Magnitude of Gabor representation
for the car image of Figure 2, convolved with
12 Gabor filters for v = 2,3,4 (high frequency

range - hfryand p =0, %, 2, 2.

vectorx($st . We compute the quantities:
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Figure 4. Magnitude of Gabor representation
for the car image of Figure 2, convolved with
12 Gabor filters for v = 0,1,2 (low frequency

range - Ifr)and ;1 =0, %, Z, 3T,

K¢ (xtst ) and assigningisst  to the class correspond-

ing to the maximum discriminant function value.

The results are tabulated in Table 1 which reveals the
superiority of the Gabor approach over the others. Despite
its discriminative oriented design, LDA leaded to the worst
recognition performances. As expected, all three methods
performance decreases as the number of samples is reduced.

whered; and djc are the cosines of the angle between a For the Gabor approach, CSM conducted to slightly better
test feature vector and the nearest training one. We assigmesults. Regarding the frequency range, a high frequency

xisst 10 L, if d; > d. Otherwisexsst, e £C.

2. Maximum correlation classifiefMCC). The second

range favors the recognition performance when the rotation
degree is low (expressed by the first data set construction).

classifier is the minimum Euclidean distance classifier. The As the rotation degree gets higher the difference between

training

. : Jest .
Euclidean distance from(;;,,. tox; is expressed as

test
Gabor

”XtGeZZor _ X;rainingH2 _ _2[XT(training)

1 -

gl + xTx
T (test)

= _2h.7 (XtGeliZor) + XGabor X (6)

where h; (x5t ) is a linear discriminant function of

xst . Atestimage is classified by this classifier by com-

puting two linear discriminant functions; (x5 ) and

test
Gabor»

“hfr” and “Ifr” shrinks and the results becomes comparable.
As in our case, less training samples means a higher degree
of object’s rotation expressed by different data sets, the drop
in the recognition rate for the methods involved is shown in
Table 2. For the Gabor approach, the largest decrease in the
recognition rate is 3.79 while the corresponding drop is over
4 and 5 for the PCA and LDA, respectively, when switched
from the Set 1to Set 2 This indicates a higher robustness
for the Gabor approach with respect to the rotation degree
compared to PCA and LDA methods. The difference is even



bigger when we compare the results st 2to the ones of
Set 3as noticed from the Table.

Table 1. Recognition rate expressed in per-
centage ( %) corresponding to all three sets,
two classifiers (CSM and MCC) and three fea-
ture extraction techniques (Gabor, PCA, and
LDA). For the Gabor approach, “hfr” and “Ifr”
stands for high and low frequency range, re-
spectively. The number of PCs correspond-
ing to the maximum performance is written
in parenthesis for PCA and LDA. The highest
recognition rate is shown in bold.

Data | Classifier| Feature extraction approach
Gabor PCA | LDA
Ifr hfr
Setl| MCC 97.81| 98.29| 96.93 | 95.98
(70) | (40)
CSM 97.93| 98.39| 97.03| 95.89
(60) | (40)
Set2| MCC 94.16 | 94.79 | 92.65| 90.68
(40) | (30)
CSM 94.14 | 95.02 | 92.56 | 90.19
(40) | (50)
Set3| MCC 87.14| 87.08 | 83.25| 75.21
(20) | (30)
CSM 87.61| 88.45| 83.51| 76.15
(20) | (140)

5. Conclusions

Gabor filters were successfully applied as feature ex-
traction step to several research image processing or pat
tern recognition topics, including face recognition, texture
recognition, facial expression recognition, etc. Their suc-
cess is highly motivated due to their ability to extract fea-
tures that tend to be scale, and rotation invariant. Moreover,
the human visual receptive fields which share the same in-
variant constraints are satisfactory modelled by Gabor fil-
ters. In this paper we brought experimental evidence re-
garding the rotation robustness of the Gabor filters for ro-
tated object recognition, where the experiments were run for
two frequencies ranges. Instead of picking up Gabor jets at
specific pixel locations, we applied the approach globally,
avoiding thus the inconvenient of misalignment for local
features. The results indicate more discriminative global
feature retrieved by Gabor filters compared to the ones

Table 2. Drop in the recognition rate cor-
responding to Gabor, PCA, and LDA ap-
proaches and the two classifiers. The first
two rows depicts the difference between the
results of Set 1and Set2 The last two rows
shows the difference between the results of
Set2and Set 3 The lowest difference is in bold

Classifier| Feature extraction approach
Gabor PCA | LDA
Ifr hfr
MCC 3.65| 350| 4.28 | 5.30
CSM 3.79| 3.37| 438 | 5.70
MCC 7.02| 7.71| 9.40 | 15.47
CSM 6.53 | 6.57 | 9.05 | 14.04

found by PCA and LDA. Future work can include exper-
iments for recognizing similar objects from other databases
(not present in the COIL database and training set), or ex-
periments with object images having more complex back-
ground. The experiments have been performed by employ-
ing simple metric based classifiers. Using advanced classi-
fiers such as multi-class support vector machines may en-
hance the overall classification performances.
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