
On the initialization of the DNMF algorithm
Ioan Buciu, Nikos Nikolaidis and Ioannis Pitas

Department of Informatics
Aristotle University of Thessaloniki

GR-54124, Thessaloniki, Box 451, Greece
Email: {nelu,nikolaid,pitas}@zeus.csd.auth.gr

Abstract— A subspace supervised learning algorithm named
Discriminant Non-negative Matrix Factorization (DNMF) has
been recently proposed for classifying human facial expressions.
It decomposes images into a set of basis images and corre-
sponding coefficients. Usually, the algorithm starts with random
basis image and coefficient initialization. Then, at each iteration,
both basis images and coefficients are updated to minimize
the underlying cost function. The algorithm may need several
thousands of iterations to obtain cost function minimization. We
provide a way to significantly improve the speed of the algorithm
convergence by constructing initial basis images that meet the
sparseness and orthogonality requirements and approximate the
final minimization solution. To experimentally evaluate the new
approach, we have applied DNMF using the random and the
proposed initialization procedure to recognize six basic facial
expressions. While fewer iteration steps are needed with the
proposed initialization, the recognition accuracy remains within
satisfactory levels.

I. INTRODUCTION

A supervised Non-negative Matrix Factorization (NMF)
algorithm, especially designed to cope with pattern recognition
task, called Discriminant-NMF (DNMF), has been recently
proposed in [1]. The algorithm is a modified version of LNMF
[2] that decomposes an image database X into basis images Z
and a coefficient matrix H, in such a way, that it incorporates
class information into the coefficient matrix. As expected,
DNMF has shown superiority over NMF [3] and LNMF when
applied on a facial expression recognition task, the method
based on DNMF yielding the highest recognition rate. The cost
function associated with DNMF algorithm leads to a modified
update procedure for Z and H by using the same expectation-
maximization (EM) strategy utilized by NMF and LNMF
algorithms. Divergence minimization between the image data
set and the product of the decomposition factors, sparseness
of basis images, redundant information reduction between
basis images (by imposing orthogonality) and feature selection
based on class information lead to an underlying cost function
that is composed of five objective terms. The algorithm starts
with random values for Z and H and, at each iteration, it mod-
ifies them in order to find the minimum of the cost function.
However, since these objective terms are coupled and must
be simultaneously minimized, one caveat of this algorithm is
that it may need several thousands of iterations to converge
to its minimum. In this paper we provide a way to speed up
the convergence of DNMF. This is performed by constructing
initial basis images, whose values are not randomly chosen but

contain information taken from the original image database.
The redundant information of these initial basis images is then
minimized by imposing orthogonality “a priori” (see Sections
II and III). Additionally, the initial basis images are projected
into a sparse and non-negative feature space. Finally, by using
a least square approach, we give a first approximation to
X ≈ ZH that brings us closer to the final solution. Thus,
instead of using initial random factors Z and H as input to
the DNMF algorithm the factors derived by a new initialization
procedure are used.

II. DISCRIMINANT NON-NEGATIVE MATRIX
FACTORIZATION

Let us suppose that we have an m× n non-negative matrix
X whose column vectors are formed by the pixel values
obtained by lexicographically scanning an image, i.e. xj =
[x1, x2, . . . , xm]T , where j = 1, . . . , n and m is the number
of pixels in the image. We want to approximate X by a
product of two non-negative matrices (factors) Z and H of size
m × p and p × n, respectively, i.e. X ≈ ZH. The columns
of Z form the basis images and H contains in its rows the
decomposition coefficients. Let us now further suppose that
we have Q distinctive image classes and nc is the number
of image samples in a certain class Q, c = 1, . . . ,Q. Each
image from the image database corresponds to one column of
matrix X and belongs to one of these classes. Therefore, each
column of the p×n matrix H can be considered as an image
representation coefficient vector h(c)l, where c = 1, . . . ,Q
and l = 1, . . . , n(c). The total number of coefficient vectors
is n =

∑Q
c=1 n(c). We denote the mean coefficient vector

of class c by µ(c) = 1
nc

∑n(c)

l=1 h(c)l and the global mean
coefficient vector by µ = 1

n

∑Q
c=1

∑n(c)

l=1 h(c)l. If we express
the within-class scatter matrix by Sw =

∑Q
c=1

∑n(c)

l=1 (h(c)l −
µ(c))(h(c)l − µ(c))

T and the between-class scatter matrix
by Sb =

∑Q
c=1(µ(c) − µ)(µ(c) − µ)T , the cost function

costDNMF associated with DNMF algorithm is written as [1]:

costDNMF = KL(X||ZH) + α
∑

i,j

uij − β
∑

i

vii+

+ γSw − δSb,
(1)

subject to Z,H ≥ 0. Here U = ZTZ, V = HHT , α, β, γ and
δ are constants. The other terms appearing in the cost function
have the following meaning. The first term KL(X||ZH) =

∑
i,j

(
xij ln

xij∑
k zikhkj

+
∑
k zikhkj − xij

)
is the Kullback-

Leibler divergence (k = 1, . . . , p) and ensures that the product
ZH approximates as much as possible the original data X.
The second term can be further split in two as

∑
i,j uij =∑

i6=j uij +
∑
i uii, where the minimization of the first sum

forces the columns of Z to be orthogonal in order to reduce
the redundancy between basis images, while the minimization
of the second term guarantees the generation of sparse features
in the basis images. The third term

∑
i vii aims at maximizing

the total “energy” on each retained component.
Starting at iteration t = 0 with random positive matrices

Z(0) and H(0), the algorithm updates their values according
to an Expectation-Maximization (EM) approach, leading to the
following updating rules for each iteration t > 0 [1]:

(i) h
(t)
kl(c) =

2µc − 1

4ξ
+

+

√
(1− 2µc)2 + 8ξh

(t−1)
kl(c)

∑
i z

(t)
ki

xij∑
k z

(t)
ik h

(t−1)

kl(c)

4ξ
(2)

The elements hkl are then concatenated for all Q classes as:

(ii) h
(t)
kj = [h

(t)
kl(1) |h

(t)
kl(2) | . . . |h

(t)
kl(Q)] (3)

where “|” denotes concatenation. The basis images are updated
as:

(iii) z
(t)
ik =

z
(t−1)
ik

∑
j

xij∑
k z

(t−1)
ik h

(t)
kj

h
(t)
jk

∑
j h

(t)
kj

(4)

(iv) z
(t)
ik =

z
(t)
ik∑
i z

(t)
ik

, for all k (5)

The final Z(f) and H(f) found at the last iteration are such
that X ≈ Z(f)H(f), Sw is as small as possible and Sb is as
large as possible.

III. DNMF INITIALIZATION

Instead of starting with random Z(0) we provide a way
to build the initial basis Z(0) in a such a way that they are
already approximately orthogonal and sparse, before entering
the DNMF iteration presented in (2) - (5). As a consequence,
the convergence speed of the DNMF algorithm can increase
substantially. Before presenting the proposed initialization
algorithm, we present the following measure of sparseness σ
of a vector z = [z1, z2, . . . , zm]T as provided by Hoyer [4]:

σ(z) =

√
m− L1

L2√
m− 1

, (6)

m being the number of image pixels. This definition of sparse-
ness is expressed in terms of the relationship between the L1

and the L2 norm of z, respectively, where L1 =
∑m
i=1 |zi| and

L2 =
√∑m

i=1 z
2
i . Expression (6) equals to zero if all elements

of z are equal (in which case the vector corresponds to an
holistic image representation) and to unity, if only one element

is nonzero (involving an extreme local image representation).
A σ value between these two extremes corresponds to an
image representation with varying degrees of sparseness. The
measure of sparseness given in this form is useful, because it
enables us to explicitly enforce the sparseness of a vector by
modifying its L1 norm, as will be seen below.

Given an image database X, a random positive matrix Z(0)

and a parameter σ that, explicitly, controls the sparseness of
basis images, the DNMF’s initialization algorithm consists of
the following steps:

1) The algorithm starts by projecting the image database
onto the random basis images He = Z(0)+X, where “+”
denotes matrix pseudoinversion.

2) The reconstructed images can then be written as Xrec =
Z(0)Z(0)+X.

3) By subtracting the reconstructed images from the original
images the residual matrix is formed as R = X−Xrec.

The reasoning for applying these first three steps is that
we wish the initial basis images to contain some information
from the original database. This is done by constructing the
aforementioned residual matrix. Moreover, as we shall see in
the Section IV, employing the residual matrix will guide
the features to be close to the final ones (mostly representing
fiducial points) through the sparseness process (step 7). The
algorithm continues as follows:

4) Sort the columns rj (j = 1, . . . , n) of R so that s1 <
s2 < . . . < sn, where sj =

∑
i rij , and keep only p < n

columns, thus forming the matrix Rp.
5) Given the set of vectors rk (the columns of Rp), k =

1, . . . , p, derive an orthogonal set of vectors dk that has the
same span as the original set of vectors rk. The span of a set
of S vectors is the set of all linear combinations that can be
formed using vectors in the set S. Collect these vectors in the
columns of a matrix D.

6) Set the L1-norm for the columns of D as L1 =

[√
m−

(
√
m− 1)σ

]
L1, so as to incorporate the desired sparseness σ

into it.
7) For each column dk of matrix D, find the closest non-

negative vector z?k (in the Euclidean sense) corresponding to
each column dk. This operation is performed by applying
a projection operator technique proposed by Hoyer [4] and
consists of the following steps applied to each column dk: a)
z?ik = dik + L1 −

∑
i zik/m; for all i, b) set P = {}; c)

wik = L1/(m − size(P)) if k 6 ∈ P or wik = 0 otherwise;
d) z?k = wk + λ(z?k − wk); e) if z?ik ≥ 0 for all i, end;
else f) set P = P ∪ {i, z?ik < 0}; g) z?ik = 0 for all i ∈
P ; h) compute b = (

∑
i zik − L1)/(m − size(P)); i) set

z?ik = z?ik − b, for all i 6 ∈ P ; j) repeat a) - e) until
all columns are non-negative. Basically, through the seventh
step, the vector dk is projected onto L1 (step 7. a.) . Within
this space z?k is projected to the closest point on the joint
constraint hypersphere, i.e. the intersection of the sum and the
the L2 constraint (step 7. d.). It also enforces non-negativity
constraints by repeating the steps until all elements are non-

Fig. 1. Formation of several basis images through the proposed and random
initialization.

negative. The parameter λ ≥ 0 from step 7) d is selected such
that the resulting z?k satisfies the L2 norm constraint. This is
done by solving a quadratic equation [4].

8) Set H? = Z?TX. The last step approximates H? through
the product Z?TX. Once we have formed Z?, a direct solution
would be H? = Z?+X. Involving the pseudoinverse could
generate unwanted negative values for the coefficients. To
avoid this situation we chose to use Z?T that gives us a
satisfactory approximation of Z?+ since the columns of Z
are approximately orthogonal to each other.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

DNMF has been tested with the random and the proposed
initialization methods for the recognition of six basic facial
expressions namely, anger, disgust, fear, happiness, sadness
and surprise from face images. The Cohn-Kanade AU-coded
facial expression image database [5] was used in the experi-
ments. The preprocessing steps and the training procedure that
involves finding Z(f) and H(f) are described in [1].

The basis image generation process is depicted in Figure 1
for eight samples. Each row represents eight columns of the
following matrices: random matrix Z(0) (1st row), residual
matrix Rp (2nd row), orthogonal columns of D (3rd row),
initial proposed Z? (4th row), final Z(f) when the input is Z?

(5th row), and final Z(f) when the input is Z(0) (last row).
Both 5-th and 6-th rows contain sparse basis images that are
ordered according to their decreasing degree of sparseness.

As mentioned in Section III, employing the residual matrix
can guide the selection of the features which will appear on the
final Z(f), when Z? is chosen. This is graphically illustrated
in Figure 2, where the first row represents the seventh step
from Section III for σ = {0.1, . . . , 0.9} applied to one
column of D, while the second row depicts the case when the
the seventh step was applied to one column of Z(0) for the
same values of σ. Notice that, as σ grows, the facial fiducial

Fig. 2. Generation of one basis image (step 7) with σ =
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The first row depicts the case
when this process is applied to one column of the matrix D, while the second
row shows the case when the process is applied to a column of the random
matrix Z(0).

points corresponding to mouth, chin, eyes or eyebrows are
emphasized, whilst the selected features corresponding to the
random matrix have rather random positions.

After the training process, Z(f) and H(f) are available. The
zero mean image data are projected onto the image basis yield-
ing a feature vector F = Z(f)TX. In the test phase, for each
zero mean test face image xtest, a test feature vector ftest is
then formed as ftest = Z(f)Txtest. If we construct a classifier
whose class label output for a test sample ftest is l̃ then, the
error rate is defined as the percentage of the misclassified
labels (expressions) when {l̃(ftest) 6= l(ftest)}, where l(ftest)
is the correct class label. Once we have formed Q classes of
new feature vectors (or prototype samples), a nearest neighbor
classifier is employed to classify the new test sample, by using
an Euclidean distance between a training feature and a test
one. The Euclidean distance from ftest to fc is expressed as
‖ftest − fc‖2 = −2gc(ftest) + (ftest)

T ftest, where gc(ftest) =
fTc ftest − 1

2‖fc‖2 is a linear discriminant function of ftest.
Minimizing the distance is equivalent with maximize (due
to the “minus” sign) the correlation between the test sample
and training sample (hence we call this distance measure as
Maximum Correlation Classifier - MCC). A test image is
classified by this classifier by computing Q linear discriminant
functions and choosing lMCC = argmaxc{gc(ftest)}.

We ran DNMF for p = {16, 25, 36, 49, 64} basis images
and for σ = {0.1, 0.2, 0.3, 0.4}. The parameter ξ was kept
fixed at 0.4999.

The number of iterations t for both initialization methods
along with the initial and final values for KL, Sw and Sb
are listed in Table I for σ = 0.3 and 16,25,36,49 and 64
basis images. Here “M” stands for the initialization method
where “I” and “II” represent the random and the proposed
method, respectively. Comparing the two initialization meth-
ods in terms of convergence, we can observe that random
initialization gives slightly smaller value for S(f)

w than the
proposed method. On the other hand S(f)

b is much greater for
the proposed method than for random initialization method.
Furthermore, the initial KL(0) for the proposed initialization is
closer to the final KL(f) and it gets closer as p increases. This
is a consequence of the step VIII and it indicates how precise
is the approximation. However, the most important aspect is
the number of iterations for both methods. Regardless of p,
the DNMF algorithm needs less iterations when initialized

TABLE I
NUMBER OF ITERATIONS t, INITIAL AND FINAL VALUES FOR KL, Sw(h) AND Sb(h) FOR INITIALIZATION METHODS “I” (RANDOM) AND “II”

(PROPOSED) AND FOR VARIOUS NUMBERS p OF BASIS IMAGES.

p M t KL(0) KL(f) S
(0)
w (h) S

(f)
w (h) S

(0)
b (h) S

(f)
b (h) Execution time (seconds)

16 I 5588 6.58e+008 5.42e+006 208.93 137.69 0.25 2.85e+007 1425
II 4971 5.66e+007 5.40e+006 4.06e+009 148.61 5.37e+005 4.46e+007 1258

25 I 4804 6.28e+008 5.41e+006 329.50 217.71 0.46 1.78e+007 1450
II 3845 3.60e+007 5.40e+006 6.18e+009 232.82 6.44e+005 2.43e+007 1160

36 I 4206 6.05e+008 5.41e+006 477.59 313.79 0.58 1.53e+007 1558
II 2805 2.17e+007 5.42e+006 8.80e+009 322.83 8.30e+005 1.27e+007 991

49 I 3733 5.84e+008 5.41e+006 646.47 425.83 0.81 1.24e+007 1609
II 1773 1.25e+007 5.44e+006 1.20e+010 421.42 1.15e+006 4.97e+006 712

64 I 3350 5.66e+008 5.41e+006 833.12 552.80 0.98 9.05e+006 1740
II 722 8.36e+006 5.46e+006 1.58e+010 533.42 1.32e+006 2.31e+006 375

with Z? and H?. The last column tabulates the execution
time necessary for DNMF to converge. Each iteration takes
longer time to be executed as the number of basis images
increases. The gain in the execution time, by employing the
proposed initialization, is more and more significant as the
number of basis images raises. For example, in the case of 36
basis images, the proposed initialization helped the algorithm
to converge with 10 minutes earlier than the case when the
random initialization was used. The difference is around 15
and 23 minutes when the number of basis images is 49 and
64, respectively. We must note that the execution time shown
in the Table corresponds to a vector x of dimension 2700, i.e.
an image of 60 × 45 pixels. A higher image resolution will
lead to a longer execution time.

Although the main purpose of the paper was to provide an
initialization method in order to reduce the number of iter-
ations (and implicitly the convergence time) we also investi-
gated how this initialization affects the classification error rate.
Table II lists the classification error rate (%) corresponding to
the proposed (Z?,H?) and random (Z(0),H(0)) initialization
methods for various numbers of basis images p and sparseness
degrees σ. For all σ and all p the proposed initialization
approach leads to a classifier performance comparable or equal
to the situation where the random initialization is chosen, but
requires less number of iterations. In the light of the classifi-
cation error rate, we found that, by applying the random ini-
tialization method, the DNMF algorithm reached a minimum
error rate of 17.15 % for 3350 iterations (executed in 1740
seconds), while the same minimum error rate was obtained by
the proposed initialization method for 722 iterations (executed
in 375 seconds). We must notice that the total time necessary
to process the steps I - VIII is very small, i.e. equivalent with
the time for executing approximately five iteration steps of the
basic DNMF algorithm.

V. CONCLUSION

The supervised learning DNMF algorithm involves the
derivation of factors that satisfy several objectives: their prod-
uct to approximate the image database, basis images to contain
as less as possible redundant information and as much as
possible sparse elements and the coefficients to incorporate

TABLE II
CLASSIFICATION ERROR RATE (%) CORRESPONDING TO THE PROPOSED

(Z?,H?) AND RANDOM (Z(0),H(0)) INITIALIZATION METHOD FOR

VARIOUS NUMBERS OF BASIS IMAGES p AND SPARSENESS DEGREES σ.

Number of basis images p
16 25 36 49 64

σ = 0.1 22.86 18.58 17.5 24.58 22.86
Error rate σ = 0.2 20 17.5 21.43 21.43 30
(Z?,H?) σ = 0.3 18.58 18.58 22 20 17.15

σ = 0.4 21.43 18.43 22.86 21.43 20
Error rate 21.43 18.58 18.58 17.15 17.15
(Z(0),H(0))

image class information. These requirements lead to an al-
gorithm that has a slow convergence rate. We proposed an
approach to speed up the learning rate by replacing the random
initialization of the factors with a new initialization method.
This method, along with random initialization, was tested on
the case when DNMF was applied to recognize six basic facial
expressions.

ACKNOWLEDGMENT

This work has been conducted in conjunction with the
”SIMILAR” European Network of Excellence on Multimodal
Interfaces of the IST Programme of the European Union
(www.similar.cc).

REFERENCES

[1] I. Buciu and I. Pitas, “A new sparse image representation algorithm
applied to facial expression recognition,” Proc. IEEE Workshop on
Machine Learning for Signal Processing, pp. 539–548, 2004.

[2] S. Z. Li, X. W. Hou, and H. J. Zhang, “Learning spatially localized,
parts-based representation,” Int. Conf. Computer Vision and Pattern
Recognition, pp. 207–212, 2001.

[3] D. D. Lee and H. S. Seung, “Learning the parts of the objects by non-
negative matrix factorization,” Nature, vol. 41, pp. 788–791, 1999.

[4] P. O. Hoyer, “Non-negative matrix factorization with sparseness con-
straints,” Journal of Machine Learning Research, vol. 5, pp. 1457–1469,
2004.

[5] T. Kanade, J. Cohn, and Y. Tian, “Comprehensive database for facial
expression analysis,” Proc. Fourth IEEE Int. Conf. Face and Gesture
Recognition, pp. 46–53, March 2000.

