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Abstract— Three techniques called non-negative matrix fac-
torization (NMF), local non-negative matrix factorization
(LNMF), and discriminant non-negative matrix factorization
(DNMF), have been recently developed for decomposing a
data matrix into non-negative factors named basis images
and decomposition coefficients. Although these techniques are
closely related to each other since they impose certain common
non-negative constraints, the decomposition process of each
algorithm involves a different objective function. While NMF
approximates in the best possible way the data matrix by
the product of its decomposition factors imposing only non-
negative constraints, LNMF adds more constraints on the basis
images to reduce the redundant information between them
and to enlarge their sparseness degree. DNMF imposes more
constraints on the coefficients in order to take into account
class information. In this paper these methods are used in the
context of face recognition to extract features from two image
databases (YALE and ORL). Extracted features are further
classified by two metric-based classifiers, namely Maximum
Correlation Classifier (MCC) and Cosine Similarity Measure
(CSM). Besides, Support Vector Machines (SVMs) are also used
for classification. Experiments show that when these algorithms
are applied along with the aforementioned classifiers, to face
recognition task they lead to quite different results, their
performance being data dependent.

I. INTRODUCTION

Due to its wide range of applications that includes biomet-
rics, information security, law enforcement and surveillance,
etc., face recognition is a research topic heavily investigated
by many researchers working on the field of computer vision.
A survey on face recognition can be found in [1]. Although
a variety of techniques have been proposed to cope with
this task, their performance differs from one test image
database to another. Face recognition is not an easy task
since facial images can be recorded under various conditions
such as non-ideal illumination conditions, the presence of
occlusions, or different facial expressions. In this paper
we compared three subspace methods named non-negative
matrix factorization (NMF) [2], local non-negative matrix
factorization (LNMF) [3], and discriminant non-negative
matrix factorization (DNMF) [4] on the task of feature
extraction from two image databases (YALE [5], and ORL
[6]). The resulting features are further used to recognize
faces from the aforementioned databases by employing two
metrics-based classifiers: Maximum Correlation Classifier
(MCC), Cosine Similarity Measure (CSM). Support Vector
Machines (SVMs) are also used for classification. NMF has
been tested in the context of face recognition in [7] along

I. Buciu, N. Nikolaidis and I. Pitas are with the Department of Infor-
matics, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Box
451, Greece {nelu,nikolaid,pitas}@aiia.csd.auth.gr

with the MCC. In this paper NMF is employed with CSM
and SVM. The face recognition performance of LNMF and
NMF has been compared in the ORL database in [3], and
LNMF showed superior recognition performance over NMF.
In this paper we investigate the behavior of these algorithms
in the case of a another database namely the YALE face
database. The recently introduced DNMF algorithm that was
successfully applied to recognize facial expression [4] is also
investigated for its potential to recognize faces.

II. FEATURE EXTRACTION

Suppose that each image from a database is stored in a m
- dimensional column vector whose elements are the pixel
values obtained by lexicographically scanning an image,
i.e. x = [x1, x2, . . . ,xm]T , where m represents the total
number of image pixels. Given n images x1,x2, . . . ,xn, we
can store them in a matrix X of size m × n. Since pixel
values correspond to grayscale levels the matrix X is non-
negative. Non-negative matrix factorization (NMF) evaluates
two non-negative factors, namely W (basis images) and H
(coefficients) such that each image xj , for j = 1, 2, . . . , n is a
linear combination of the basis images, i.e. xj ≈ Whj . Here
W is a matrix m×p (whose columns store the basis images),
and h is a p× 1 vector comprising the linear decomposition
coefficients. Due to the non-negativity constraint imposed
in the decomposition process the reconstructed image is
formed additive composition of basis images. The quality
of approximation depends on the cost function associated to
the decomposition. Two cost function have been proposed
in [2]: Kullback-Leibler divergence KL(x||Wh)NMF =∑

i

(
xilog xi∑

k Wikhk
− xi +

∑
k Wikhk

)
and squared Eu-

clidean distance D(x||Wh)NMF =
∑

i ‖xi −
∑

k Wikhk‖2

between x and its decomposition Wh. When the first cost
function is chosen to be minimized, the following multi-
plicative updating rules, found by applying a Expectation
- Maximization (EM) approach, guarantee a non-increasing
behavior of the cost function [2]:

hkj = hkj

∑
i wki

xij∑
k wikhkj∑

i wik
. (1)

wik = wik

∑
j

xij∑
k wikhkj

hjk∑
j hkj

. (2)

Local non-negative matrix factorization (LNMF) has been
developed by Li et al [3] in order to increase the basis
images sparseness. Also, by appropriate modification of the
cost function by imposing basis orthogonality the redundant



information captured by the basis images is minimized. The
new cost function becomes:

D(X||WH)LNMF = KL(X||WH)NMF +

+ α
∑
ik

uik − β
∑

k

vkk
(3)

where [ujk] = U = WT W, [vjk] = V = HHT and
α, β > 0 are constants. Therefore, the new function has
to be minimized subject to three additional constraints:
1) min

∑
j ujj (to generate more localized features), 2)

min
∑

j �=k ujk (to minimize the redundancy between image
bases) and 3) max

∑
j vjj (to maximize the total “activity”).

The following update rules for the basis images and the
coefficients, that are applied sequentially, are provided in [3]:

hkj =
√

hkj

∑
i

wki
xij∑

k wikhkj
. (4)

wik =
wik

∑
j

xij∑
k wikhkj

hjk∑
j hkj

. (5)

wik =
wik∑
i wik

, for all k. (6)

Both NMF and LNMF consider the database as a whole
and treat each image in the same way. There is no class
information integrated into the cost function. An extension
of LNMF algorithm called Discriminant Non-negative Ma-
trix Factorization (DNMF) which takes into account class
information has been proposed in [4]. If we have Q dis-
tinctive image classes and we denote by nc the number of
samples in class c, c = 1, . . . ,Q, then each image from
the image database (corresponding to one column of matrix
X) belongs to one of these classes. Therefore, each column
of the p × n matrix H can be expressed as the image
representation coefficients vector hcl, where c = 1, . . . ,Q
and l = 1, . . . , nc. The total number of coefficient vectors
is n =

∑Q
c=1 nc. We denote the mean coefficient vector

of class c by µc = 1
nc

∑nc

l=1 hcl and the global mean

coefficient vector by µ = 1
n

∑Q
c=1

∑nc

l=1 hcl. If we express
the within-class scatter matrix by Sw =

∑Q
c=1

∑nc

l=1(hcl −
µc)(hcl − µc)T and the between-class scatter matrix by
Sb =

∑Q
c=1(µc − µ)(µc − µ)T , then, the cost function

associated with DNMF algorithm is written as [4]:

D(X||WH) = KL(X||WH)NMF + α
∑
i,k

uik − β
∑

k

vkk+

+ γSw(h) − δSb(h),
(7)

subject to W,H ≥ 0. Here γ and δ are constants. Both
Sw(h) and Sb(h) are associated to the coefficient matrix.
Notice that by eliminating the last two terms we obtain
LNMF cost function. Obviously, by minimizing within-class
scatter matrix we want the dispersion of samples that belong
to the same class around their corresponding mean to be
as small as possible, while by maximizing the between-class
scatter matrix each cluster formed by the samples that belong

to the same class is moved as far as possible from the other
clusters.

In the light of the same EM strategy the DNMF algorithm
updates the coefficients as follows [4]:

hkl(c) =
2µc − 1

4ξ
+

+

√
(1 − 2µc)2 + 8ξhkl(c)

∑
i wki

xij∑
k wikhkl(c)

4ξ

(8)

where ξ is a constant. The elements hkl are then concatenated
for all Q classes as:

h
(t)
kj = [hkl(1) |hkl(2) | . . . |hkl(Q)] (9)

where “|” denotes concatenation. Since there is no change
in the cost function related to the basis images with respect
to LNMF their update follows the same rules (5) and (6).

III. CLASSIFICATION PROCEDURE

Let us now split the n face images into a training set
n(tr) and a disjoint test set n(te) with the corresponding
matrices X(tr) and X(te), respectively. The training images
X(tr) are used in the expression for evaluationg the decom-
position factors. In the classical classification problem, we
construct a classifier where the output (predicted value) of
the classifier for a test image x(te) is l̃. Since X(tr) = WH,
the feature vectors used for classification are formed as
h(tr) = W−1x(tr), where x(tr) is now a zero mean training
face. A new test feature vector h(te) is then formed as
h(te) = W−1x(te), where x(te) is a zero mean test face. The
recognition error is defined as the percentage of misclassified
face images when {l̃(h(te)) �= l(h(te))}. Once we have
formed Q classes of new feature vectors the following three
classifiers are employed to classify a new test image:

1. Cosine similarity measure (CSM). This approach is
based on the nearest neighbor rule and uses as similarity
the angle between a test feature vector and a training one.
We choose l̃CSM = argminc{dc}, where dc = (h(te))T h(tr)

‖h(te)‖‖h(tr)‖
and dc is the cosine of the angle between a test feature vector
h(te) and the training one h(tr).

2. Maximum correlation classifier (MCC). The second
classifier is a minimum Euclidean distance classifier. The
Euclidean distance from h(te) to h(tr) is expressed as
‖h(te) − h(tr)‖2 = −2gc(h(te)) + (h(te))T h(te), where
gc(h(te)) = (h(tr))T h(te) − 1

2‖h(tr)‖2 is a linear discrim-
inant function of h(te). A test image is classified by this
classifier by computing Q linear discriminant functions and
choosing l̃MCC = argmaxc{gc(h(te))}.

3. Support vector machines (SVMs). For SVMs the class
membership for a new test vector h(te) is given by the sign
of the following decision function [8]:

f(h(te)) =
ntr∑
i=1

αi li K(h(te),h(tr)
i ) + b (10)

where K(h1,h2) is a kernel function that defines the dot
product between Φ(h1) and Φ(h2) in an higher-dimensional



Hilbert space H, Φ denoting a nonlinear map Φ : Rm → H.
αi are nonnegative Lagrange multipliers associated with the
quadratic optimization problem:

minimize 1
2y

T y + E
∑n(tr)

i=1 ρi

subject to li(yT Φ(h(tr)
i ) + b) ≥ 1 − ρi, i = 1, . . . , n(tr).(11)

In (11), y and b are the parameters of the optimal hyperplane
in H that attempts to separate the classes. That is, y is the
normal vector to the hyperplane, |b|/‖y‖ is the perpendicular
distance from the hyperplane to the origin, with ‖y‖ denoting
the Euclidian norm of vector y. E is a parameter which
penalizes the errors and ρi are positive slack variables.
Frequently used kernel functions are the polynomial kernel,
K(hi, hj) = (hT

i hj + s)q and the Exponential Radial Basis
Function (ERBF) kernel, K(hi, hj) = exp{−γ|hi − hj |}.
We used q = 1 (equivalent to a linear classifier), q = 2, 3, 4
and γ = 0.005 in our experiments. To handle multi-class
classification we chose the Decision Directed Acyclic Graph
(DDAG) learning architecture proposed by Platt et al. [9].
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Fig. 1. Recognition error for YALE database and CSM classifier.
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Fig. 2. Recognition error for YALE database and MCC classifier.

IV. DATABASES DESCRIPTION

Two different public available databases have been chosen
to work with. The Yale face database contains 165 grayscale
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Fig. 3. Recognition error for YALE database and linear SVM classifier.
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Fig. 4. Recognition error for ORL database and CSM classifier.

images of 15 individuals. There are 11 images per subject,
one per different facial expression or configuration: center-
light, w/glasses, happy, left-light, w/no glasses, normal, right-
light, sad, sleepy, surprised, and wink. For computational
reasons the image size was reduced to 42 × 31 pixels.
The second database used was the ORL face database that
contains ten different images for forty distinct subjects.
All images have been shot against a dark homogeneous
background with the subjects in an upright, frontal position
with tolerance for some side movement. For the experiments
the images were downsampled to 42 × 31 pixels.

V. EXPERIMENTAL RESULTS

For the Yale database, the first six image samples of each
subject were used to form the training data set while the
remaining five samples were used as test images. In the case
of the ORL database, the images have been randomly split in
200 samples for training data set and the rest 200 of them as
test data set. Figures 1 and 2 depict the recognition error for
the CSM and the MCC classifier, respectively, on the Yale
database versus the number of basis images. The smallest
errors is attributed to NMF algorithm in conjunction with the
CMS metric. As far as SVMs are concerned, the best results
were obtained by the linear kernel. Thus, we do not report
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Fig. 5. Recognition error for ORL database and MCC classifier.
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Fig. 6. Recognition error for ORL database and linear SVM classifier.

results obtained using polynomial and ERBF kernels. Figure
3 shows that NMF still outperforms both LNMF and DNMF,
DNMF being the second best. Performing face recognition
on ORL database lead to somehow opposite results. For
this database, LNMF provided the lowest recognition error
regardless of the classifier involved as can be seen from
Figures 4, 5 and 6. NMF behaved the worst especially when
it was associated with MCC classifier which is consistent
with the results reported in [3]. DNMF algorithm is situated
in the middle regarding its performance.

VI. DISCUSSIONS AND CONCLUSION

The potential of NMF, LNMF and DNMF algorithms in
the face recognition task has been investigated in this paper.
Features extracted by these techniques from two different
databases were classified by using two metric-based classi-
fiers (CSM, MCC) and SVMs. The experiments showed that
CSM and SVM yield better recognition performance than
MCC. Overall, as we expected, SVMs performed the best,
followed by CSM and MCC. As far as the feature extraction
approach is concerned, based on the results obtained by
the algorithms involved, it seems that NMF is more robust
to illumination changes than LNMF and DNMF since the
variation of lighting condition for the faces pertaining to

Yale database is much more intense than for images from
the ORL database. Contrary to the results obtained for
ORL, where LNMF gave the highest recognition rate, when
face recognition is performed on the YALE database the
best results are obtained by the NMF algorithm. Although
for the ORL database, generally, the faces are in frontal
position, this database also contains poses where the face
is slightly rotated. This can contribute to the performance
of LNMF since this algorithm is rotation invariant (up to
some degree) since it generates local features in contrast to
NMF which yields more distributed features. Despite the fact
that DNMF approaches was successfully applied to recognize
facial expression, in the case of YALE database we found
its performance to be inferior to NMF and slightly inferior
when compared to LNMF applied for ORL database.
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