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ABSTRACT 

A new general strategy for measuring similarity 
between proteins is introduced. Our approach has its 
roots in computational linguistics and the related 
techniques for quantifying and comparing content in 
strings of characters. The pairwise comparison of 
proteins relies on the content regularities expected to 
uniquely characterize each sequence. These regularities 
are captured by n-gram based modelling techniques and 
in the sequel are contrasted by cross-entropy related 
measures. In this very first attempt to fuse theoretical 
ideas from computational linguistic within the field of 
bioinformatics, we experimented with different 
implementations having always as ultimate goal the 
development of practical, computational efficient 
algorithms. The experimental analysis provides 
evidence for the usefulness of the new approach and 
motivates the further development of linguistics-related 
tools as a means to decipher the biological sequences.  

Keywords: protein similarity, n-grams, entropy, cross-
entropy, maximum likelihood, exploratory data analysis.   
 

INTRODUCTION  

Proteomics refers to the study of the complete collection 
of cellular proteins (in the same way as genomics refers 
to the complete set of genes) and finds a wide 
application in concurrent bioinformatics. Typical 
questions that apply to almost all genes are the 
followings. What protein does each gene produce, when 
is this protein produced, and which is its functional 
role? Whereas the genomic sequence can inform us 
about which proteins the cell has the potential to make, 
and microarrays expression analysis can provide an 
approximate answer about which proteins are made, it is 
only proteomic approaches that provide a concrete 
picture of the fundamental biochemistry of a cell. 
Among the most important proteomic approaches are 
the different comparisons among protein sequences. The 
necessity for such comparisons emerges from the 
interest in detecting homologies among the proteins, 
which may, in turn, imply structural and functional 
similarities. Proteins are large, complex molecules 
composed of amino acids and their comparison and 
clustering according to similarity requires specialized 
algorithms.    
The most frequently used methods for measuring 
protein similarities are based on tedious algorithmic 
procedures for sequence alignment. According to Liao 

and Noble (8), the development of powerful methods 
for detecting protein similarity can be delimited into 
four generations, with each one representing a step 
forward in the evolution of these techniques. The early 
methods are characterized by pairwise similarities 
between proteins. Smith-Waterman algorithm (Smith 
and Watermann (1)) remains the standard reference 
method due to the accuracy of the obtained results. 
Other heuristic algorithms, within this first generation of 
methodologies, like the BLAST (2), FASTA (3) or 
CLUSTAL (4) provide higher computational efficiency 
at the expense of accuracy. The second generation is 
characterized by the computation of profiles for whole 
protein families (Gribskov and Robinson (5)) based on 
hidden Markov models (Krogh (6), Baldi (7)). These 
methodologies allow the computational biologist to 
infer nearly three times as many homologies as a simple 
pairwise alignment algorithm (Liao (8)). The algorithms 
included in the third generation, like PSI–BLAST 
(Altschul et al (9)) and SAM (10), exploit information 
stored in large databases and improve the results over 
the profile-based methods by collecting homologous 
sequences and incorporating the resulting statistics into 
a central model. The algorithms in the fourth generation, 
provide additional accuracy by modeling the difference 
between positive and negative alignment examples (8).  
All the above mentioned methods are built over 
sequence alignment. Despite the maturity of the 
developed methodologies working towards this 
direction, the derivation of protein similarity measures 
is still an active research area. The interest is actually 
renewed due to the continuous growth in size of the 
widely available databases that calls for alternative cost-
effective algorithmic procedures that can reliably 
quantify protein similarity without resorting to any kind 
of alignment. Apart from efficiency, a second 
specification of equal importance for the establishment 
of similarity measures is the avoidance of parameters 
that need to be set by the user (a characteristic inherent 
in the majority of previous methodologies). It is often 
the case with the classical similarity approaches, that the 
user is faced with a lot of difficulties in the choice of a 
suitable search algorithm, scoring matrix or function as 
well as a set of optional parameters for which optimum 
values correspond to the best possible similarity. 
A variety of new alternative methods has already 
become available for expressing similarity between 
biological sequences and for use in different 
applications. In Sjolander et al (11) Dirichlet mixtures 
are used, where the incorporated densities are designed 
to be combined with observed amino-acid frequencies 
to form estimates of expected amino-acid probabilities 



for each position in a HMM profile (or any other 
statistical model). In Katti (12), a set of proteins from 
the SWISS-PROT database were selected and analyzed 
for tandem repeats using a sliding window technique. 
The authors of Eskin et al (13), found a biological 
motivation for using a mixture model of common 
ancestors in order to estimate the probability 
distribution over discrete alphabets from observations. 
The obtained model was then used to find amino acids 
probabilities based on observed counts in an alignment 
and to estimate probability distributions over protein 
families. Using the approach of support vector machines 
(SVMs), the authors in Saigo et al (14) apply 
discriminative methods and prove that their method is 
the most effective for the problem of superfamily 
recognition. Latent semantic analysis (LSA) is another 
method used in Ganapathiraju et al. (15) to capture 
secondary structure propensities (tendencies) in protein 
sequences. Finally, in Krasnogor and Pelta (16), the 
authors propose the use of the universal similarity 
metric (USM) for structural similarity between pairs of 
proteins.   
Here a new approach for measuring the similarity 
between two protein sequences is introduced. It is 
inspired by the successful use of entropy concept for 
information retrieval in the field of statistical language 
modeling (Young and Bloothoof (17), Manning and 
Schütze (18), Jurafsky and Martin (19)). Specifically, n-
gram modeling is first applied to each protein sequence 
and cross-entropy measures are then employed to 
compare pairs of proteins. Since the presented work was 
actually the first attempt to adopt this dual step for 
comparing biological sequences, some experimentation 
was necessary in order to discover the most effective 
way in which it could be applied in the specific 
application domain. The final proposal includes detailed 
algorithmic procedures for implementing the above 
principles when moderate-sized biological strings (with 
elements from the restricted vocabulary of 20 
aminoacids) are to be compared. Using actual data, from 
publicly available databases, we validate the suggested 
similarity measure and show that it provides a very 
effective way to capture the common characteristics of 
the compared sequences, while avoiding the annoying 
task of choosing parameters, additional functions or 
evaluation methods. This high performance and the 
ready-to-plug-in character, taken together with the 
obvious computational efficiency, constitute our 
approach a promising alternative.    
The rest of the paper is structured as follows. An 
introduction to the employed theoretical concepts is 
followed by a discussion of the implementation aspects 
of our proposal. In the sequel we briefly describe the 
utilized protein data and present the results obtained 
from the application of two variants of our method. At 
the end we are concluding with the main aspects of this 
new approach for measuring protein similarity, while 
discussing the possible improvements that have to be 
attempted in a future work.    

 

METHODS 

Theoretical Background  

There are various kinds of language models that can be 
used to capture different aspects of regularities of 
natural language (Wang et al (20)). Markov chains are 
generally considered among the more fundamental 
concepts for building language models. In this approach 
the dependency of the conditional probability of 
observing a word wk at a position k in a given text is 
assumed to be depended only upon its immediate n 
predecessor words wk-n … wk-1. The resulting stochastic 
models, usually referred as n-grams, constitute heuristic 
approaches for building language grammars and their 
linguistic justification has often been questioned in the 
past.  However, in practice they have turned out to be 
extremely powerful.  Nowadays n-gram modeling 
stands out as superior to any formal linguistic approach 
(Van Compernolle (21)) and has gained high popularity 
due to its simplicity.   
Closely related with the design of models for textual 
data are algorithmic procedures for validating them. 
Apart from the justification of a single model, they can 
facilitate the selection of the specific one (among 
competing alternatives) most faithfully representing the 
available data. Entropy is a key concept for this kind of 
procedures. In general, its estimation is considered to 
provide a quantification of the information in a text and 
has strong connections to probabilistic language 
modeling (Durbinn et al (22)). It can also be utilized for 
expressing how much information is reflected by a 
particular grammar, how well a given grammar matches 
a language, how large is the predictive power of a 
grammar, etc. While relying on the same theoretical 
principles, the estimation of entropic-measures in the 
domain of language processing requires some 
modifications (dictated by the discrete nature of data) 
with respect to the procedures established in the field of 
statistics.   
As described in (19) and (Brown et al (23)), the entropy 
of a random variable X that ranges over a domain א, and 
has a probability density function, P(X) is defined as: 
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The cross-entropy between the actual probability 
distribution P(X) (over a random variable X) and the 
probability distribution Q(X) estimated from a model is 
defined as: 
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Two important (for the development of our approach) 
propositions should be mentioned here. First, the cross 
entropy of a stochastic process, measured by using a 
model, is an upper bound on the entropy of the process 
(i.e. H(X)≤H(X,Q)) (18), (23)). Second, as mentioned in 
(19), between two given models, the more accurate is 



the one with the lower cross-entropy. 
Recently, in Van Uytsel and Comparnolle (24), the 
general idea of entropy has been adopted in the specific 
case that a written sequence W={w1,w2,…,     wk-1,wk, 
wk+1,…} is treated as an n-gram based composition and 
resulted in the following estimating formula 
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where the variable X has the form of an n-gram  

n
iw ={ wi,wi+1,…,wi+n-1} , the summation runs over all 

the possible n-length combinations of consecutive wi 
(i.e W*={{w1,w2,…,wn},{w2,w3,….,wn+1},….}) and N 
is the total number of n-grams in the investigated 
sequence. The second term in the summation is the 
conditional probability that relates the n-th element of 
an n-gram with the preceding n-1 elements. Following 
the principles of maximum likelihood estimation 
(MLE), it can be estimated by, simply, encountering a 
counting procedure and expressing the corresponding 
relative frequencies:  
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The above entropic estimation (taken together with the 
general form of eq.1&2 suggesting a direct way to pass 
from entropy to cross-entropy formulation) was the 
basis for building our protein similarity measure, which 
is described in the sequel.    
 
 
The n-gram Based Protein Similarity Measure  

Protein sequences from all different organisms can be 
treated as texts written in a universal language in which 
the alphabet consists of 20 distinct symbols, the amino-
acids. The mapping of a protein sequence to its 
structure, functional dynamics and biological role then 
becomes analogous to the mapping of words to their 
semantic meaning in natural languages. Recently 
(Biological Language Conference, 2003), it was 
suggested that this analogy can be exploited by applying 
statistical-language-modeling and text-classification-
techniques for the advancement of biological sequences 
understanding. Scientists within this hybrid research 
area have become optimist about the identification of 
Gramar/Syntax rules that could reveal systematics of 
high importance for biological and medical sciences.     
In the presented approach, we adopted a Markov-chain 
grammar and built for our protein dataset 2-gram, 3-
gram and 4-gram models for each protein sequence. To 
clarify things let a protein sequence WASQVSENR. In 
the 2-gram modeling the available ‘’words’’ are {WA 
AS SQ QV VS SE EN NR}, while in the 3-gram 
representation the words are {WAS ASQ SQV QVS 

VSE SEN ENR}. Based on the frequencies of these 
words (estimated by counting) and by forming the 
appropriate ratios of frequencies, the entropy of a n-
gram model can be readily estimated (eq.(3)). This 
measure is indicative about how well-predicted is a 
specific protein-sequence by the corresponding model. 
While this measure could be applied to two distinct 
proteins (and help us to decide about which protein is 
better represented by the given model), the outcomes 
couldn’t facilitate the direct comparison of the two 
proteins (and help us to decide if they are similar or 
not).  
The previous shortcoming led us to devise the 
corresponding cross-entropy measure, in which the n-
gram model is, first, built based on the word-counts of 
one protein sequence (training-step) and then the 
predictability, of the second sequence, by the model is 
measured (projection-step) as a means of contrasting the 
two proteins.  So the common information content is 
expressed via the formula   
 
                        

 
 
The first term in the above summation refers to the 
reference protein sequence (i.e. it results from counting 
the words of that specific protein).  The second term 
refers to the sequence based on which the model has to 
be estimated (i.e. it results from counting the words of 
that protein). Variable X ranges over all the words (that 
are represented by n-grams) of the reference protein 
sequence.   
 
 
Database Searches with the New Similarity Measure  

Having introduced the new similarity measure, we 
proceed here with the description of its use for 
performing searches within protein databases. The crux 
of our approach is that both the unknown query-protein 
(e.g. a newly discovered protein) and each protein in a 
given database (containing annotated proteins with 
known functionality, structure etc.) are represented via 
n-gram encoding and the above introduced similarity is 
utilized to compare their representations. By 
recognizing the most similar proteins within the 
database, the structure and function of the query-protein 
can be inferred based on the principle of assimilation. In 
the algorithmic implementation of these ideas, and as a 
byproduct of the experimentation with actual data, we 
devised two different ways in which the n-gram based 
cross entropy similarity is engaged in efficient database 
searches. The most straightforward implementation 
gave rise to an algorithm called hereafter as direct  
method. A second algorithm, the alternating method, 
was devised in order to cope with fact that the proteins 
to be compared might be of very different length.  
 
Direct method. Let Sq the sequence of a query-protein 
and {S}={S1, S2, … SN} the given protein database. The 
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first step is the computation of ‘perfect’ score (PS) or 
‘reference’ score for the query-protein. This is 
computed from eq.(5) by using both as reference and 
model sequence the query-protein (actually the obtained 
result corresponds to the entropy of the query protein). 
In the second  step,  each protein -in turn- from the 
database serves as the model sequence in the 
computation of a similarity score using the eq.(5) with 
the query-protein serving as the reference sequence. In 
this way, N similarities are computed H(Xq,PMi), 
i=1,..,N. Finally these similarities are compared against 
the perfect score PS. By computing the absolute 
differences D(Sq,Si)=|H(Xq,PMi)–PS|, the 
‘discrepancies’ in term of information content between 
the query-protein and the database-proteins are 
expressed. By ranking these N measurements, we can 
easily identify the proteins most resembling the query-
protein as those proteins which have been assigned the 
lowest D(Sq,Si).           
 
Alternating method. The only difference with respect  to 
the direct method is that when comparing the query-
protein with each database-protein, the role of reference 
protein and model protein can be interchanged based on 
which of the two sequences is the shortest (the shortest 
sequence playing the role of reference sequence in 
eq.(5)). The other steps (perfect score estimation, 
ranking, etc) follow as previously.  
 

EXPERIMENTS 

Protein Sequence Database 

The proposed strategy for measuring protein similarity 
was demonstrated and validated using a database 
containing an overall sample of 100 protein sequences. 
Two distinct groups of protein data had been selected as 
follows. The first 50 entries of the database 
corresponded to proteins selected at random from the 
NCBI public database (25). The last 50 entries 
corresponded to proteins resulted from different 
mutations of the p53 gene. The mutations were selected 
randomly from the database we created using the 
descriptions, provided by the International Agency for 
Research on Cancer (IARC) Lyon, France (26). This set 
of 50 proteins, denoted hereafter as p53-group, is 
expected to form a tight-cluster of textual-patterns in the 
space of biological semantics. On the contrary, the rest 
50 proteins should appear as textual-patterns in the same 
space that differ not only with other, but also (and 
mainly) from the p53-group. 
 
 
Results 
  
First, we followed some classical steps of Exploratory 
Data Analysis in order to validate the two variants of the 
proposed strategy. In Fig.1 the matrix containing all the 
possible dissimilarity measures D(Si,Sj), i,j=1,2,…N  is 
depicted as a grey scale image, for both algorithmic 

variants of our method and three different n-gram 
models. In the adopted visualization scheme all the 
shown matrices (after proper normalization) share a 
common scale in which the 1 (white) corresponds to the 
maximum distance in each matrix. It is worth 
mentioning here that the ‘ideal’ spatial outlay is a white 
matrix with only a black segment at the lower right 
corner. It is therefore clearly evident from Fig.1 that 4-
gram modeling followed by ‘alternating’-version of our 
algorithm has an almost excellent performance when 
searching within the given database. 
 

 

Fig. 1 Visualization of the matrices containing all the 
possible pairwise dissimilarities for the 100 proteins in out 
database.    

 
Second, in order to provide quantitative measures of 
performance for the two variants, we adopted an index 
of search accuracy, that is derived from receiver 
operating characteristic (ROC) curves and has recently 
gained popularity when validating protein-databases 
searches (Liao and Noble (8), Schäffer et al (27)).  This 
index, usually referred as truncated ROC-score, is the 
ratio of the area under the ROC-curve (in the plot of 
true- positives versus false positives for different 
thresholds of dissimilarity). More explicitly, as 
mentioned in (27), for a number T of true positives 
available to be found and a  fixed number of false 
positives n, this index is the proportion of the rectangle 
[0, T ] [ 0, n ] that lies under the sensitivity curve. It 
takes values in the range [0-1], with one corresponding 
to the highest performance. This ROC-score has been 
tabulated in Table 1 for different n-grams and both 
methods.    
 



Table. 1 The ROC-score 

Normailzed area under ROC curve n-gram 
model Direct 

method 
Alternating 

method 
2-gram 0.589 0.680 
3-gram 0.723 0.817 
4-gram 0.900 0.978 

 
 
DISCUSSION 

 
The method introduced in this paper represents a first 
step investigating the engagement of language 
modelling in characterizing, handling and understanding 
biological data in the format of sequences. We 
specifically studied the use of cross-entropy measure 
applied over n-gram models as a means of searching in 
protein database in an effective and efficient way. The 
experimental results indicated the reliability of our 
algorithmic strategy for expressing similarity between 
proteins. Given the conceptual simplicity of the 
introduced approach, it appears as an appealing 
alternative to previous well-established techniques.     
 
Considering the general dichotomy between ‘‘global’’ 
and ‘‘local’’ protein similarity measures, we should 
mention that our approach belongs to the former 
category. During the evaluating of our method we 
observed that from the two introduced variants the 
better performance is associated with the second one. 
This means that it is important to come up with 
improvements that overcome the possible wrong 
identifications of similar sequences due to the decisively 
big differences between sequences length. In the 
exceptional case when all the compared sequences have 
the same length the direct method is equivalent with the 
alternating method and performs excellent.   
Regarding the order of the employed n-gram model, 
after testing with order of 2,3,4,5 we noticed that the 
performance of the method increases with the order of 
the model up to 4. After the order of 5 due to lack of 
data the corresponding maximum likelihood estimates 
becomes unreasonable uniform and very low. This sets 
an upper limit for our model order in the specific 
database (perhaps slightly higher order model could 
work in different protein databases.  
 
Before continuing the work on the improvement of this 
method we have to remark that this is a statistical in 
nature technique. It can be improved by incorporating 
biological knowledge (e.g. working with functional 
groups of amino-acids).     
Finally, another aspect that deserves further 
consideration is to test if our method scales well with 
the size of the protein database.   
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