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ABSTRACT

In this paper, a new approach for automatic audio classification us-
ing non-negative matrix factorization (NMF) is presented. Training
is performed onto each audio class individually, whilst during the
test phase each test recording is projected onto the several training
matrices. Experiments demonstrating the efficiency of the proposed
approach were performed for musical instrument classification. Sev-
eral perceptual features as well as MPEG-7 descriptors were mea-
sured for 300 sound recordings consisting of 6 different musical
instrument classes. Subsets of the feature set were selected using
branch-and-bound search, in order to obtain the most discriminating
features for classification. Several NMF techniques were utilized,
namely the standard NMF method, the local NMF, and the sparse
NMF. The experiments demonstrate an almost perfect classification
(classification error 1.0%), outperforming the state-of-the-art tech-
niques tested for the aforementioned experiment.

1. INTRODUCTION

The need for musical content analysis arises in different contexts
and has many practical applications, mainly for automatic music
transcription, effective data organization, annotation in multimedia
databases, and internet search. Automatic musical instrument clas-
sification is the first step in developing such applications. It is a re-
search area which can also be applied to general sound recognition
tasks. However, despite the massive research which has been carried
out in the automatic speech recognition, limited work has been done
on musical content identification.

The problems addressed so far in musical content identification
can be broadly classified into two categories: classification of iso-
lated instrument tones and classification of sound segments. Clas-
sifiers using isolated tones have a limited use in practical applica-
tions, while sound segment classifiers could be effectively used in
music information retrieval (MIR) systems. Using sound segments,
identifications of 79-84% for 4 classes of instruments were reported
in [8] using Bayes decision rules for classification. Cepstral coeffi-
cients, constant-Q coefficients and autocorrelation coefficients were
used as features to recordings extracted from the MIS Database from
UIOWA [1], which is used in this paper as well. More recently,
MPEG-7 temporal descriptors and spectral features were used in
conjunction with the k-NN algorithm and decision rules based on
rough set theory [9]. A recognition rate of 68.4% at best was re-
ported for classifying sounds coming from 18 instrument classes.
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Non-negative matrix factorization (NMF) is a subspace method
for basis decomposition [4]. Its various modifications have been
used in several classification experiments, where the training pro-
cedure is performed by applying an NMF algorithm to a data matrix
containing the training vectors of all the available classes. This tech-
nique results to an unsupervised training approach. NMF classifica-
tion experiments report encouraging results compared to other unsu-
pervised classifiers, but also indicate that a supervised NMF classi-
fication approach is needed to obtain comparable results with other
supervised classifiers.

In this work, the problem of automatically classifying musical
instrument segments is addressed. Recordings from the UIOWA
database were used that form 6 instrument classes. A total num-
ber of 9 features were extracted, covering perceptual descriptors as
well as spectral descriptors defined by the MPEG-7 audio standard
[2]. The first and second moments of the features were considered,
creating a feature set of 41 dimensions as explained in Section 5.2.
Branch-and-bound selection was applied to the feature set in order
to select the subset that maximizes the classification accuracy [12].
The audio files were split into a training set and a test set using 70%
of the available data for training and the remaining 30% for testing.
For classification, NMF is used by training individually a classifier
for each class and projecting the test data onto each trained class ma-
trix. The class label of each test recording is determined by using the
cosine similarity measure (CSM). Several variants of the NMF algo-
rithm were employed, such as the standard NMF method, the local,
and the sparse NMF enabling a comparative study of the algorithms’
efficiency. The results indicate that using the subset comprising of 6
best features and the standard NMF algorithm yields a correct classi-
fication rate of 99.0%, outperforming the traditional NMF classifica-
tion methods and other statistical model-based classifiers employed
for the aforementioned experiment [10].

The remainder of the paper is organized as follows. The audio
features extracted are discussed in Section 2. Section 3 is devoted to
the NMF method and its extensions. Section 4 presents the standard
unsupervised NMF classification approach and the proposed super-
vised classifier. Section 5 describes the data set used, the feature
selection strategy, and the experiments performed to assess the per-
formance of the proposed classifier. Finally, conclusions are drawn
in Section 6.

2. FEATURE EXTRACTION

In an audio classification system a careful selection of features that
are able to accurately describe the temporal and the spectral proper-
ties of the sound is vital. In our approach, a combination of features
originating from general audio data classification and the MPEG-7



Table 1. Set of extracted features.
1 Zero-Crossing Rate
2 Delta Spectrum (Spectrum Flux)
3 Spectral Rolloff Frequency
4 Mel-Frequency Cepstral Coefficients
5 MPEG-7 AudioSpectrumCentroid
6 MPEG-7 AudioSpectrumEnvelope
7 MPEG-7 AudioSpectrumSpread
8 MPEG-7 AudioSpectrumFlatness
9 MPEG-7 AudioSpectrumProjection Coefficients

audio framework is used. The complete list of extracted features is
presented in Table 1. The scalar features 1-3 are proposed in sys-
tems concerning general audio data (GAD) classification and speech
recognition. They can be treated as a short-term description of the
textural shape of the audio segments. The mel-frequency cepstral
coefficients (MFCCs) form a feature vector. They are widely used in
audio processing applications providing a description of the spectral
shape of the audio signal. For each audio frame of 10 msec dura-
tion, 13 MFCCs were used. The features 5-8 are proposed by the
MPEG-7 audio standard [2]. They belong to the basic spectral de-
scriptors category. As 9th feature we used the projection coefficient
to a single basis. AudioSpectrumProjection coefficients are part of
the MPEG-7 spectral basis descriptors.

3. NON-NEGATIVE MATRIX FACTORIZATION

Non-negative matrix factorization (NMF) has been proposed as a
novel subspace method in order to obtain a parts-based representa-
tion of objects by imposing non-negative constraints [4]. The prob-
lem addressed by NMF is as follows. Given a non-negative n × m
data matrix V (consisting of m vectors of dimensions n × 1), it is
possible to find non-negative matrix factors W and H in order to
approximate the original matrix:

V ≈ WH (1)

where the n × r matrix W contains the basis vectors and the r × m
matrix H contains in its columns the weights needed to properly ap-
proximate the corresponding column of matrix V as a linear com-
bination of the columns of W. Usually, the component number r
is chosen so that (n + m)r < nm, thus resulting in a compressed
version of the original data matrix.

To find an approximate factorization in (1), a suitable objective
function has to be defined. The generalized Kullback-Leibler (KL)
divergence between V and WH is the most frequently used objective
function. Various algorithms that incorporate additional constraints
in deriving (1) have been proposed and are briefly reviewed subse-
quently.

3.1. Standard NMF

The standard NMF enforces the non-negativity constraints on ma-
trices W and H. Thus, a data vector can be formed by an additive
combination of basis vectors. The proposed cost function is the gen-
eralized KL divergence:

D(V||WH) =
n∑

i=1

m∑
j=1

[vij log
vij

yij
− vij + yij ] (2)

where WH = Y = [yij ]. D(V||WH) reduces to KL divergence
when

∑n
i=1

∑m
j=1 vij =

∑n
i=1

∑m
j=1 yij = 1. NMF factorization

is defined then as the solution of the optimization problem:

min
W,H

D(V||WH) subject to W, H ≥ 0,
n∑

i=1

wij = 1 ∀j (3)

where W, H ≥ 0 means that all elements of matrices W and H are
non-negative. The above optimization problem can be solved by
using the iterative multiplicative rules [4].

3.2. Local NMF (LNMF)

Aiming to impose constraints concerning spatial locality and con-
sequently revealing local features in the data matrix V, LNMF in-
corporates 3 additional constraints into the standard NMF problem:
1) Minimize the number of basis components representing V. 2)
The different bases should be as orthogonal as possible. 3) Retain
the components giving most important information. The above con-
straints are expressed in the following LNMF cost function:

D(V||WH) =

n∑
i=1

m∑
j=1

[vij log
vij

yij
− vij + yij ]

+ α
r∑

i=1

r∑
j=1

uij − β
r∑

i=1

r∑
j=1

qii (4)

where α, β are constants, WT W = U = [uij ], and HHT = Q =
[qij ]. The minimization is similar to the one used in NMF (3) and a
local solution can be found by using 3 update rules [5].

3.3. Sparse NMF (SNMF)

Inspired by NMF and sparse coding, the aim of SNMF is to impose
constraints that can reveal local sparse features on data matrix V.
The following cost function is optimized for SNMF:

D(V||WH) =
n∑

i=1

m∑
j=1

[vij log
vij

yij
− vij + yij ] + λ

m∑
j=1

||hj ||l (5)

where λ is a positive constant and ||hj ||l the l-norm of the j-th col-
umn of H. An SNMF factorization is defined as in (3), including
also that ∀i||wi||l = 1. In SNMF, the sparseness is measured by a
linear activation penalty: the minimum l-norm of the column of H.
A local solution of the minimization problem (5) can be obtained by
the update rules proposed in [6].

4. CLASSIFICATION BASED ON NMF

4.1. Unsupervised NMF classification

The standard approach to audio classification in the NMF subspace
is performed as follows [10]. Using data from the training set, the
data matrix V is created (each column vj contains a feature vector
computed from an audio file). The training procedure is performed
by applying an NMF algorithm to the data matrix yielding the basis
matrix W and the encoding matrix H.

In the test phase, for each test audio recording, represented by a
feature vector vtest, a new test encoding vector is obtained by:

htest = W†vtest (6)



where W† is defined as the Moore-Penrose generalized inverse ma-
trix of W. Having formed during training N classes of encoding
vectors hl, l = 1, 2, . . . , N (by applying an NMF algorithm on V,
yields matrices W and H as in (1)), a nearest neighbor classifier is
employed to classify the new test sample by using the cosine simi-
larity measure (CSM). The class label l′ of the test sound is:

l′ = arg max
l=1,2,...,N

{
hT

testhl

‖htest‖‖hl‖
}

(7)

thus maximizing the cosine of the angle between htest and hl. An
alternative measure is also used, where the class label of each test
file is determined by examining each row of htest:

l′ = arg max
i

hi,test (8)

where hi,test is the i-th element of htest.

4.2. The proposed approach

The major drawback of the NMF classifier presented in Section 4.1
is the unsupervised manner of learning parts-based patterns from the
data, since no information about the class discrimination is incorpo-
rated into the NMF training procedure. In addition, the initial ran-
dom values of matrices W and H can affect greatly the convergence
of the algorithm, as the value of NMF objective function defined in
(2) may result in a local minimum, thus not yielding in an appropri-
ate factorization.

The creation of a supervised classifier where the NMF training
procedure is performed for each data class individually is proposed.
This results in a pair of matrices W and H for each class:

Vi = WiHi, i = 1, 2, · · · , N (9)

where N is the number of different classes, Vi the data matrix of
class i. The number of components used for training each class is
given by:

ri =

⌊
nimi

ni + mi

⌋
(10)

where ni and mi are the dimensions of matrix Vi. In a sense, this ap-
proach is an application of one-class classification, where the train-
ing of each class is performed individually, by using a set of train-
ing data representing the respective class in the absence of counter-
examples [11].
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Fig. 1. Testing using the proposed NMF classifier (ht and vt stand
for htest and vtest respectively).

During test procedure, each test sound is represented by the fea-
ture vector vtest, as in the approach described in Section 4.1. After-
wards, vtest is projected onto each class basis matrix Wi, yielding:

h(i)
test = W†

i · vtest (11)

For each class, the vector h(i)
test is compared to each column vector of

matrix Hi using the CSM. The vector that maximizes the CSM for
the matrix Hi is calculated as a measure of similarity for this class:

CSMi = max
j=1,2,...,ri

{
h(i)T

test h(i)
j

‖h(i)
test‖‖h(i)

j ‖

}
(12)

where h(i)
j represents the j-th column of matrix Hi. Finally, the class

label of the recording is determined by the the maximum CSMi, i.e.:

l′ = arg max
i=1,2,...,N

{CSMi} (13)

A block diagram of the testing procedure using the proposed NMF
classification method is plotted in Figure 1.

5. EXPERIMENTAL RESULTS

5.1. Dataset

Audio files extracted from the Musical Instrument Samples database
collected by the university of Iowa [1] were used. Overall 300 au-
dio files were extracted that belong to 6 different instrument classes:
piano, violin, cello, flute, bassoon, and soprano saxophone. In de-
tail, 58 piano recordings, 101 violin recordings, 52 cello recordings,
31 saxophone recordings, 29 flute recordings, and 29 bassoon ones
were used. The 300 sounds are partitioned into a training set of 210
audio files and a test set of 90 audio files, preserving a 70%/30%
analogy between the two sets, which is typical for classification ex-
periments. All recordings have a duration of about 20 sec and are
sampled at 44.1 kHz sampling rate.

5.2. Feature selection

For each feature described in Section 2, its mean and its variance
were computed, resulting in 41 features in total. In order to reduce
the feature vector dimension, a suitable feature subset for classifica-
tion has to be selected. The optimal feature subset should maximize
the ratio of the inter-class dispersion over the intra-class dispersion:

J = tr(S−1
w Sb) (14)

where tr(·) stands for the trace of a matrix, Sw is the within-class
scatter matrix, and Sb is the between-class scatter matrix. Because
the number of distinct subsets is 41!

(41−D)!D!
, where D is the de-

sired subset size, the branch-and-bound search strategy is consid-
ered for complexity reduction. In this strategy, a tree structure of
(41 − D + 1) levels is created, where every node corresponds to
a subset. The highest level corresponds to the full set, while each
node corresponds to a D-dimensional subset at the lowest level. The
branch-and-bound algorithm traverses the structure using a depth-
first search with backtracking [12].

Table 2. Subset of the 6 best features.
1 Mean of the 1st MFCC
2 Variance of the 1st MFCC
3 Mean of the AudioSpectrumFlatness
4 Variance of the AudioSpectrumFlatness
5 Mean of the AudioSpectrumEnvelope
6 Mean of the AudioSpectrumSpread



Two separate experiments using the various NMF algorithms
have been performed by employing different feature subsets in or-
der to find the feature dimension that maximizes the classification
performance. In the first experiment, 6 features were used, while in
the second experiment a set of 20 features was utilized. The subset
of 6 best features is summarized in Table 2.

5.3. Performance Evaluation

Experiments were carried out using 7-fold cross validation and the
mean value of the classification accuracy and its standard deviation
for the three NMF algorithms and for all the two feature subsets
is shown in Figure 2. The SNMF algorithm was tested using two
different values for the parameter λ (0.001 and 0.1). The highest
mean accuracy of 99.0% is achieved by the standard NMF algorithm
when the subset of 6 features is used. The achieved results outper-
forms the classification accuracy for the aforementioned experiment
in [10] which used the standard NMF classifier, as well as supervised
GMM and continuous HMM classifiers. In addition, the accuracy of
NMF exceeds 97% when the 20-feature subset is employed. The
LNMF is clearly outperformed by all algorithms, which may be ex-
plained due to the locality constraints LNMF imposes when applied
to holistic descriptors. The SNMF overall displays better results than
the LNMF, but its efficiency depends on the selection of parameter
λ (performance is slightly better when λ = 0.001).
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Fig. 2. Mean classification accuracy for NMF algorithms.

Additional information about the performance of the standard
NMF algorithm using the 6-dimensional set is depicted in Table 3
where a confusion matrix for one run of the experiment is depicted.
The columns of the confusion matrix correspond to the predicted
musical instrument and the rows to the actual one. Only one mis-
classification occurs for the flute, that it is wrongly classified as pi-
ano. It is worth mentioning that the flute samples displayed similar
dynamical and spectral shape with some piano samples.

6. CONCLUSIONS

In this paper, we have proposed a new method of classifying audio
signals using non-negative matrix factorization which is trained in-
dividually for each class. Experiments applied to musical instrument

Table 3. Confusion matrix for standard NMF, 6 Features.
Instr. Piano Bassoon Cello Flute Sax Violin
Piano 18 0 0 0 0 0

Bassoon 0 9 0 0 0 0
Cello 0 0 16 0 0 0
Flute 1 0 0 8 0 0
Sax 0 0 0 0 9 0

Violin 0 0 0 0 0 29

classification indicate that the standard NMF algorithm can classify
the musical instrument recordings with a high accuracy compared
to its variants. It has also been shown that a feature subset selec-
tion can increase the classification accuracy. In the future, NMF
techniques will be applied to discriminate the whole spectrum of
orchestral instruments. Finally, for musical instrument classification
experiments, advanced timbral features could also be extracted, such
as the timbral descriptors proposed by the MPEG-7 standard.
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