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Abstract

Probabilistic latent semantic analysis is enhanced
with long distance bigram models in order to improve
word clustering. The long distance bigram probabilities
and the interpolated long distance bigram probabilities
at varying distances within a context capture different
aspects of contextual information. In addition, the base-
line bigram, which incorporates trigger-pairs for vari-
ous histories, is tested in the same framework. The ex-
perimental results collected on publicly available cor-
pora (CISI, Cranfield, Medline, and NPL) demonstrate
the superiority of the long distance bigrams over the
baseline bigrams as well as the superiority of the inter-
polated long distance bigrams against the long distance
bigrams and the baseline bigram with trigger-pairs in
yielding more compact clusters containing less outliers.

1 Introduction

Word clustering is one of the most challenging tasks
in natural language processing [5]. In this paper, word
clustering based on the Probabilistic Latent Semantic
Analysis (PLSA) [3] is proposed that takes into con-
sideration long distance bigram probabilities at vary-
ing distances within a context as well as their interpo-
lated variants and the probabilities of the baseline bi-
gram with trigger-pairs for varying histories. The par-
tition entropy coefficient of the derived clusterings re-
veals the superiority of the interpolated long distance
bigrams against the long distance bigrams and the bi-
grams with trigger-pairs in producing more crisp clus-
ters. In addition, the intra-cluster dispersion demon-
strates that the use of interpolated long distance bi-
grams generates meaningful clusters, similar to those
formed when the bigram model is interpolated with
trigger word pairs for various histories, eliminating the
cluster outliers, which are observed when long distance
bigrams are used. However, clustering with trigger pairs

assigns similar words into more than one clusters, and
needs appropriate trigger pair selection, which is not an
easy task.

2 Language Modeling and the PLSA

The n-gram model estimates the probability of a
word given only the most recent n− 1 preceding words
[2]. Frequently, the bigram or the trigram models are
employed only. For long distance bigrams [4], a word
wi is predicted by the d-th preceding word wi−d. It is
obvious that for d = 1, the long distance bigram degen-
erates to the baseline bigram. The efficiency of the long
distance bigram model can be further enhanced by es-
timating the probability of long distance bigrams in H
different distances [7].

The PLSA performs a probabilistic mixture decom-
position by defining a generative latent data model, the
so called aspect model, which associates an unobserved
class variable zk ∈ Z = {z1, z2, . . . , zR} with each
observation. Here, the observation is simply the oc-
currence of a word wj ∈ V = {w1, w2, . . . , wQ} in
a text/document ti ∈ T = {t1, t2, . . . , tM}, while the
unobserved class variable zk models the topic a text was
generated from. Summing over all possible realizations
of zk, the joint distribution of the observed data is ob-
tained

P (ti, wj) = P (ti)
R∑

k=1

P (zk|ti)P (wj |zk)

︸ ︷︷ ︸
P (wj |ti)

. (1)

As can be seen in (1), the text-specific word distribu-
tions P (wj |ti) are obtained by a convex combination of
the R aspects/factors P (wj |zk). Representing each text
ti as a sequence of words < v1 v2 . . . vQi >, where
Qi is the number of words in text ti, P (ti, wj) can be
decomposed as follows:

P (ti, wj) = P (vQi |vQi−1 . . . v1, wj)·
·P (vQi−1 |vQi−2 . . . v1, wj) . . . P (v1|wj) P (wj).(2)



Taking into consideration the long distance bigram
model, (2) can be expressed as (Method I)

P (ti, wj) ' P (wj)
∏

wl∈ti

Pd(wl|wj). (3)

where Pd(wl|wj) = P (wl|wj , j = l − d). Motivated
by (3) and following similar lines to the PLSA deriva-
tions, Pd(wl|wj) can be obtained by summing over all
possible realizations of zk, i.e.

Pd(wl|wj) =
R∑

k=1

Pd(zk|wj) Pd(wl|zk). (4)

By formulating the problem as maximization of the log-
likelihood function with respect to the entailed proba-
bilities, the Expectation Maximization (EM) algorithm
[6] can be used, which alternates between the 1) Ex-
pectation (E)-step, where the posterior probabilities are
computed for the latent variables based on the current
estimates of the parameters

P̂d(zk|wj , wl) =
Pd(wl|zk)Pd(zk|wj)∑R

k′=1 Pd(wl|zk′)Pd(zk′ |wj)
(5)

and the 2) Maximization (M)-step, which maximizes
the expected log-likelihood, computed in the previous
E-step, with respect to Pd(wl|zk) and Pd(zk|wj) yield-
ing the following update equations [3]:

Pd(wl|zk) =

∑Q
j=1 Nd(wj wl)P̂d(zk|wj , wl)∑Q

l′=1

∑Q
j=1 Nd(wj wl′)P̂d(zk|wj , wl′)

(6)

Pd(zk|wj) =
∑Q

l=1 Nd(wj wl)P̂d(zk|wj , wl)∑R
k′=1

∑Q
l=1 Nd(wj wl)P̂d(zk′ |wj , wl)

.

(7)
By alternating (5) with (6)-(7), a procedure that con-
verges to a local maximum of the log-likelihood results.
Each word wj is assigned to one only cluster Csj such
that sj = arg maxk Pd(zk|wj) , j = 1, 2, . . . , Q.

When the PLSA employs the interpolated long dis-
tance bigrams (3) is rewritten as (Method II)

P (ti, wj) ' P (wj)
∏

wl∈ti

P (H)(wl|wj). (8)

where

P (H)(wl|wj) =
R∑

k=1

[
H∑

d=1

λdPd(wl|zk)

]
P (zk|wj)

(9)
and λd are weights for each component probability es-
timated on held out data by means of the EM algorithm

[6]. Pd(wl|zk) and P (zk|wj) can be obtained by an EM
algorithm which alternates between the E-step

P̂d(zk|wj , wl) =
Pd(wl|zk)P (zk|wj)∑R

k′=1 Pd(wl|zk′)P (zk′ |wj)
(10)

and the M-step

Pd(wl|zk) =

∑Q
j=1 N(wj wl)P̂d(zk|wj , wl)∑Q

l′=1

∑Q
j=1 N(wj wl′)P̂d(zk|wj , wl′)

(11)

P (zk|wj) = (12)
∑Q

l=1

∑H
d=1 λdN(wj wl)P̂d(zk|wj , wl)∑R

k′=1

∑Q
l=1

∑H
d=1 λdN(wj wl)P̂d(zk′ |wj , wl)

.

Each word is assigned to a single cluster Csj
using

sj = arg maxk P (zk|wj), j = 1, 2, . . . , Q.

3 Experimental Results

The word clustering algorithms that enhance PLSA
with long distance bigrams (Method I) and interpolated
long distance bigrams (Method II) are implemented and
tested for bigram at distance d = 1, 2, 3, 4 or d = 6 and
H = 2, 3, 4, respectively. In addition, language models
combining the baseline bigram with trigger pairs [9] at
various histories (d = 2, 3, 4 and d = 6) were also in-
corporated in the PLSA-based clustering algorithm for
comparison purposes.

The experiments were conducted on four publicly
available document collections1, namely the CISI, the
Cranfield, the Medline, and the NPL that include 1460,
1400, 1033, and 11429 documents, respectively. The
texts have been pre-processed in order to remove any
tags, non-English words, numbers or symbols with no
meaning. The words were also stemmed using the
Porter stemmer [8]. A vocabulary cut-off was also ap-
plied by discarding words with a frequency of appear-
ance less than 5 for the CISI corpus and 3 for the Med-
line and NPL, while no vocabulary cut-off was applied
to the Cranfield corpus. To derive the conditional prob-
abilities needed for Methods I and II, first the frequen-
cies of the distance bigrams at distances d = 1, 2, 3, 4
and d = 6 were estimated. Furthermore, the weights
λd, d = 1, 2, . . . ,H needed for the interpolated long
distance bigrams at H = 2, 3, 4 were estimated by
a two-way cross validation on held-out data using the
EM algorithm. The predefined number R of the result-
ing classes was set to 250, 320, 290, and 300 for the
CISI, the Cranfield, the Medline, and the NPL corpus,

1http://ir.dcs.gla.ac.uk/resources/test_
collections/
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CISI Cranfield Medline NPL

Figure 1. Partition Entropy Coefficient of the clusterings derived when the long distance bigrams, the
interpolated long distance bigrams, and the bigrams with trigger-pairs are employed.

1 2 3 4 5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

ss
 A

ss
ig

nm
en

t P
ro

ba
bi

lit
ie

s

Clusters
1 2 3 4 5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

ss
 A

ss
ig

nm
en

t P
ro

ba
bi

lit
ie

s

Clusters
1 2 3 4 5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

ss
 A

ss
ig

nm
en

t P
ro

ba
bi

lit
ie

s

Clusters

Method I, Classic Bigram Long Dist. Bigram d = 2 Long Dist. Bigram d = 4

1 2 3 4 5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

ss
 A

ss
ig

nm
en

t P
ro

ba
bi

lit
ie

s

Clusters
1 2 3 4 5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

ss
 A

ss
ig

nm
en

t P
ro

ba
bi

lit
ie

s

Clusters
1 2 3 4 5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

ss
 A

ss
ig

nm
en

t P
ro

ba
bi

lit
ie

s

Clusters

Method II, Classic Bigram Interp. Long Dist. Bigram H = 2 Interp. Long Dist. Bigram H = 4

Figure 2. Intra-cluster statistics (dispersion, outliers) of the cluster assignment probabilities for sample
clusters derived from the NPL corpus when Method I and Method II are applied to the baseline bigrams,
the long distance bigrams at distance d = 2 or d = 4, and the interpolated long distance bigrams at
distance H = 2 or H = 4.

H = 2 debye, divide (-ed, -er, -ers, -ing), domain, equilibrium, filter (-s, -ed, -ing), fourier, geiger, harmonic (-ically, -ics), method
(-s), maxima, medium, numerical (-ically, -ous), inverse (-ely, -ion), nonlinearly, nonuniform (-ity), subharmonic (-s), substrate,
unitary, unsymmetric (-ical, -ically)

H = 3 asymmetrical (-ically), divide (-ed, -er, -ers, -ing), domain, equilibrium, filter (-s, -ed, -ing), fourier, harmonic (-ically, -ics),
image, imaginary, inverse (-ely, -ion), linearly, logarithm (-ic, -s), lorenz, maxima, medium, method, minkowski, nonequilib-
rium, nonlinearly, nonuniform (-ity), numerical (-ically, -ous), paid, subharmonic (-s), substrate, unitary, unsymmetric (-ical,
-ically)

H = 4 asymmetrical (-ically), divide (-ed, -er, -ers, -ing), domain, equilibrium, filter (-s, -ed, -ing), fourier, harmonic (-ically, -ics),
image, imaginary, inverse (-ely, -ion), linearly, lorenz, maxima, medium, method, minkowski, nonequilibrium, numerical (-
ically, -ous), nonlinearly, nonuniform (-ity), subharmonic (-s), substrate, unitary, unsymmetric (-ical, -ically)

Table 1. Algebra-related Word clusters, that are produced by the PLSA Method II in the NPL corpus for
H = 2, 3, 4. Boldface letters denote the word stems.

respectively. In addition, the convergence criterion for
the EM algorithm of the PLSA word clustering requests
the relative log-likelihood change between two succes-
sive EM-steps to be less than 10−4, a condition that was
satisfied after approximately 100 iterations. It is also

worth mentioning that the PLSA-based algorithms have
executed 10 times for each language model in order to
guarantee that the results are not affected by the EM
convergence to local extrema.

To select among the Q2 possible long distance word-



pairs (trigger pairs) at the same distances as the ones
employed in the long distance bigrams (d = 2, 3, 4 and
d = 6), a probability threshold p0 = 3.5/Q was set. A
trigger interaction between two words would thus be al-
lowed only if the corresponding word pair probability in
the bigram model were below p0. The conditional prob-
abilities of the extended model (i.e. bigram with trigger
pairs) were then estimated by a back-off technique as
described in [10].

Treating PLSA-based clustering as a “defuzzifica-
tion” of a fuzzy clustering result, the partition entropy
coefficient (PE) is estimated as a figure of merit for the
clustering assessment [1]. The partition entropy coeffi-
cient admits values in [0, log2 R]. A small value of the
partition entropy coefficient indicates the existence of a
clustering structure in the data as well as the ability of
the clustering technique to create efficiently hard clus-
ters. Figure 1 plots the partition entropy coefficient for
the PLSA-based clusters derived when the long distance
bigrams, the interpolated long distance bigrams, and the
bigrams with trigger-pairs are employed in each dataset.
The partition entropy coefficient values for all datasets
are small, quite closer to the lower bound than to the
upper bound that is depicted in the y-axis of the plot.
As it can also be seen, the partition entropy coefficient
values are significantly smaller for the interpolated long
distance bigrams rather than the long distance bigrams.
Moreover, the PE coefficient values when trigger-pair
bigrams are used are smaller than those when the long
distance bigrams are used, but greater than the PE val-
ues measured when the interpolated long distance bi-
grams are employed.

A comparison of the clustering methods in terms
of their intra-cluster dispersion is illustrated using box
plots in Figure 2. Due to space limitations, results are
shown for histories d = 1, 2 and d = 4 and the NPL
corpus only. More precisely, Figure 2 depicts the clus-
ter assignment probability of each word for five sample
clusters derived by the clustering methods under study,
when the baseline bigram model, the long distance bi-
grams at distance d = 2 or d = 4, and the interpolated
long distance bigrams at distance H = 2 or H = 4 are
used. By comparing the plots in the first row of Fig-
ure 2, it can be seen that the intra-cluster dispersion,
which demonstrates the cluster compactness, is smaller
when the long distance bigrams in Method I are used
instead of the baseline bigrams. From the plots of the
second row in Figure 2, it can be verified that Method II,
which employs the interpolated long distance bigrams,
reduces the outliers observed when long distance bi-
grams are used.

In Table 1, sample clusters from the NPL corpus pro-
duced by the clustering PLSA Method II under study

are demonstrated. It has been found that although the
PLSA method when applied to a bigram model ex-
tended with trigger-pairs selected from histories d =
2, 3, 4 and d=6 yields meaningful clusters as Method II
does,it frequently splits a compact cluster related to a
topic into more than one subclusters.

4 Conclusions

A technique that resorts to probabilistic latent se-
mantic analysis is developed for word clustering. It
employs long distance bigram models with and with-
out interpolation in order to capture the long-term word
dependencies with a few parameters. The validity as-
sessment of the clustering results has demonstrated the
superiority of the interpolated long distance bigrams
against the long distance bigrams in producing more
compact word clusters with less outliers. These clusters
have also been proven to have less outliers than those
produced when trigger pairs from various histories are
employed in conjunction with the baseline bigram.
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