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ABSTRACT
A novel color histogram equalization approach is proposed
that not only takes into consideration the correlation between
color components in the color space, but it is also enhanced
by a multi-level smoothing technique adopted from the field
of language modeling. In this way, the correlation between
color components is taken into account and the problem of
unseen values for a color component, either considered inde-
pendently or in combination with others, is efficiently dealt
with. The proposed method is conducted in the HSI color
space for intensity (I) component and saturation (S) com-
ponent given the I component. The quality of the visually
appealing equalized images was confirmed by means of the
entropy and the Kullback-Leibler divergence estimates be-
tween the resulted color histogram and the multivariate uni-
form probability density function.

1. INTRODUCTION

Image enhancement has as main task to improve the visual
quality of an image from the human perspective. It uses
several techniques, such as histogram equalization, contrast
stretching, and slicing, that were initially developed for gray-
scale images. However, several attempts have been made to
generalize the aforementioned techniques to color images.
The generalization has been proven to be rather complicated
due to the various color models and the relationships between
the color components.

Histogram equalization being the most simple and effec-
tive method for enhancing the contrast of an image was one
of the fields where a non-trivial, but not always successful
generalization from gray-scale images to color images has
been observed. As expected, the literature on color histogram
equalization is not as rich as that on gray-scale histogram
equalization.

The most simple and straightforward extension is the ap-
plication of gray-scale histogram equalization to the different
bands of the color image. Some efforts were also focused in
spreading the histogram along the principal component axes
of the original image [1] or spreading repeatedly the three
two-dimensional histograms [2]. In [3, 4], histogram equal-
ization is mainly based on the brightness component of the
original color image. Since the aforementioned techniques
use only marginal color histograms, the correlation between
the different color bands is ignored.

Latter methods tried to exploit the correlation between
color components. For example, the cumulative histogram is
extended to higher dimensions by means of a uniform 3-D
histogram specification in the RGB color space [5]. Another
attempt to jointly equalize two color components (saturation
and intensity) in the HSI color space was presented in [6]. In
[7], the equalization is performed on a 3-D histogram using

a multivariate enhancement technique (histogram explosion)
which was later extended to CIE LUV space [8]. A recur-
sive algorithm for 3-D histogram enhancement scheme for
color images was also described in [9], while a hue preserv-
ing color image enhancement technique which modifies the
saturation and intensity components in the color difference
(C-Y) space was proposed in [10].

In a more recent approach, the achromatic channel of a
color image is equalized using a traditional method and the
chromatic channel is processed in a similar way to image
warping [11]. In [12], a mesh which was initially deformed
in color space to fit an existing histogram is mapped to a uni-
form histogram, and in [13], the degree of contrast enhance-
ment is controlled by a single parameter which also affects
the maintenance of the original image pixel distribution.

The above methods, except the most recent ones [12, 13],
in most cases produce unsatisfactory results (i.e. images not
visually pleasing with unwanted artifacts) since the cumula-
tive distribution function which is calculated as a mapping
function during the equalization process forces the output
pixels to have a uniform distribution independent of the dis-
tribution of the input image pixels.

In this paper, the notion of unigram and bigram prob-
abilities together with smoothing, borrowed from the field
of natural language modeling, is applied to color histogram
equalization in a way to jointly equalize the two components
of the HSI color space, namely the saturation and the inten-
sity. The histogram equalization approach is partially built
on that proposed in [6], but it is extended by smoothing the
necessary probabilities in order to counteract the effect of the
unseen color component combinations, which stems from the
dimensionality of the color space and the often limited num-
ber of colors present in an image. The results of the proposed
method are validated both from the visually appealing equal-
ized color images and the values objective figures of merit
which are employed in order to determine the uniform nature
of the resulting pixel distributions. Such figures of merit are
the entropy of the resulted color histogram and the Kullback-
Leibler divergence between the resulted color histogram and
the multivariate uniform probability density function.

The outline of the paper is as follows. In Section 2 the
histogram equalization approach is presented both for the 1-
D and 3-D case while its enhancement with smoothing tech-
niques is proposed in Section 3. The experimental results are
depicted in Section 4 and, finally, conclusions are drawn in
Section 5.



2. HISTOGRAM EQUALIZATION

2.1 1-D Histogram Equalization

The histogram equalization technique for gray scale images
attempts to uniformly distribute the pixels of an image I to all
the available gray levels L. That is, if the original pixel dis-
tribution is F a transformation function T ()has to be defined
such that T (F) �U , whereU is the uniform distribution.

Assuming indexes i, j that run over the image, the nor-
malized image histogram is described by:

f (k) = P
{
I(i, j) = k

}
=
Nk
N

(1)

where k ∈ [0,L−1] represents a grey level, Nk is the number
of occurrences of the gray level k and N is the total number
of pixels in the image.

The transformation function T applied to image I for a
given grey level k results in:

gk = T (Ik) =
k

∑
m=0

f (k) =
k

∑
m=0

Nm
N

. (2)

2.2 3-D Histogram Equalization

In color images, the value of each pixel is represented by a
vector X̄ with elements the pixel values of each color com-
ponent. In the analysis presented below, a color space with
three color components is assumed, but the same analysis can
be easily extended to higher dimensional spaces.

Let us assume I(i, j) = X̄ = [xcc1
,xcc2

,xcc3
] a random

vector which models the pixel value for each color compo-
nent cc1, cc2, and cc3 in a color image. It is obvious that the
histogram of such a color image is a 3-dimensional probabil-
ity density function (pdf) defined by:

f (X̄) = f (xcc1
,xcc2

,xcc3
) =

∂ 3F(xcc1
,xcc2

,xcc3
)

∂xcc1
xcc2

xcc3

(3)

while the cumulative distribution function is described by:

F(X̄) = F(xcc1
,xcc2

,xcc3
) =

P
{
xcc1

≤ xcc1
,xcc2

≤ xcc2
,xcc3

≤ xcc3

}
. (4)

Let IEq(i, j) be the estimate of the pixel value in the
equalized color image. It can be modeled by a random vector
Ȳ = [ycc1

,ycc2
,ycc3

] such that Ȳ = T (X̄).
According to the statistical properties described in [14]

given n random variables xi, the random variables yi defined
as

y1 = F(x1) y2 = F(x2|x1) . . . yn = F(xn|xn−1, . . . ,x1)
(5)

are independent and uniformly distributed in [0,1].
Taking into consideration (5), the transformation func-

tion T for color histogram equalization can be expressed as
follows:

ycc1,k =
k

∑
m=0

f (xcc1,m) =
k

∑
m=0

P(xcc1
= m) (6)

ycc2,s =
s

∑
m=0

f (xcc2,m|xcc1,k) =
s

∑
m=0

f (xcc1,k,xcc2,m)

f (xcc1,k)

=
s

∑
m=0

P(xcc1
= k,xcc2

= m)
P(xcc1

= k)
(7)

ycc3,t =
t

∑
m=0

f (xcc3,m|xcc2,s,xcc1,k)

=
t

∑
m=0

f (xcc1,k,xcc2,s,xcc3,m)

f (xcc1,k,xcc2,s)

=
t

∑
m=0

P(xcc1
= k,xcc2

= s,xcc3
= m)

P(xcc1
= k,xcc2

= s)
. (8)

In (6-8), k ∈ [0,K−1], s∈ [0,M−1], and t ∈ [0,L−1], where
K,S,L are the number of discrete levels for each color com-
ponent cc1, cc2, and cc3, respectively.

3. SMOOTHING

The method of histogram equalization presented in (6)-(8)
suffers from the sparse data problem which is blamed for the
presence of unwanted artifacts in the equalized images. It
can be easily seen that working in the color space described
above, there are K, K ·M and K ·M ·L possible different color
component combinations for (6), (7), and (8), respectively.
The observed color component combinations, however, do
not exceed the total number of image pixels N and as a result
the probabilities of the unseen events are forced to zero. This
problem can be visually verified by the presence of “gaps” in
the histogram of the equalized image (there are empty bins
between very full bins). Fig. 1 depicts the histogram of sat-
uration in an original and an equalized image by the Adobe
Photoshop procedure for simplicity reasons.
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Figure 1: Histograms of saturation for (a) the original and (b)
the equalized image by Abode Photoshop.

In our approach, to alleviate this problem we used
smoothing, a well-known technique, which is largely applied
in language modeling for counteracting the effects of statis-
tical variability that turn up in small data sets [15]. Among
the various backing-off techniques, such as Good Turing es-
timates, absolute discounting, linear discounting etc., and the
interpolation approaches, such as linear interpolation, which
are met in smoothing literature, we selected absolute dis-
counting, a back-off method that amounts in a strict choice
between a specific and a generalized distribution.

More precisely, since we have three probability distri-
butions to estimate which are interdependent, a multi-level
smoothing was conducted in order to recursively smooth the
higher order back-off probability distribution by means of the
immediate lower order probability distribution. That is, the
back-off distribution for the probability (8) is smoothed by
the distribution (7), which in turn may be smoothed by the



distribution (6). This process can be described by the follow-
ing equations:

P(xcc1
= k) =

⎧⎪⎪⎨
⎪⎪⎩

N(xcc1=k)−bcc1
N if N(xcc1

= k) > 0

bcc1

N−n0
N · 1

∑i:N(xcc1
=i)=0 1

if N(xcc1
= k) = 0

(9)

P(xcc2
= s|xcc1

= k) =

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N(xcc1=k,xcc2=s)−bcc2
N(xcc1=k) if N(xcc1

= k,xcc2
= s) > 0

bcc2

N−n0(xcc1=k)
N(xcc1=k) · P(xcc2 =s)

∑i:N(xcc1
=k,xcc2

=i)=0P(xcc2=i)

if N(xcc1
= k,xcc2

= s) = 0

(10)

P(xcc3
= t|xcc2

= s,xcc1
= k) =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

N(xcc1=k,xcc2=s,xcc3=t)−bcc3
N(xcc1=k,xcc2=s)

if N(xcc1
= k,xcc2

= s,xcc3
= t) > 0

bcc3

N−n0(xcc1=k,xcc2=s)
N(xcc1=k,xcc2=s)

· P(xcc3 =t|xcc2=s)

∑i:N(xcc1
=k,xcc2

=s,xcc3
=i)=0P(xcc3=i|xcc2=s)

if N(xcc1
= k,xcc2

= s,xcc3
= t) = 0

(11)

In the just described equations (9)-(11), the following nota-
tion is used:
• n0 is the number of unseen color component values,
• n0(xcc1

= k): the number of cc2 color component values
that are never seen given that the cc1 component value is
k,

• n0(xcc1
= k,xcc2

= s): the number of cc3 color com-
ponent values that are never seen given that the cc1
component value is k and the cc2 component value is s,

• bcc3
=

n(3)
1

n(3)
1

+2n(3)
2

where

n(3)
r = ∑i, j,t:N(xcc1=i,xcc2= j,xcc3

=t)=r 1

• bcc2
=

n(2)
1

n(2)
1

+2n(2)
2

where n(2)
r = ∑i, j:N(xcc1=i,xcc2= j)=r 1

• bcc1
=

n(1)
1

n(1)
1

+2n(1)
2

where n(1)
r = ∑i:N(xcc1=i)=r 1

By applying (9)-(11) to estimate the joint probabilities that
appear in (6)-(8), the zero frequency problem in the result-
ing equalized histogram is prevented. Indeed, by comparing
Fig. 2b and Fig. 1b, it is seen that the histogram of saturation
after having applied smoothing does not suffer from the zero
frequency problem.

4. EXPERIMENTAL RESULTS

The histogram equalization method presented in Section 2
enhanced with smoothing, as it is formulated in Section 3,
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Figure 2: Histograms of saturation for (a) the original and (b)
the equalized image with smoothed probabilities.

was developed and applied to different color images. The
quality of the results was confirmed both from the human vi-
sual perspective and objective measures, such as histogram
entropy and Kullback-Leibler divergence between the re-
sulted histogram and the uniform one.

Initially, the experiments were conducted in the RGB
color space. All the probabilities of the form P(xR = k),
P(xG = s|xR = k) and P(xB = t|xG = s,xR = k) were estimated
according to (9)-(11) and then the transformation functions
(6)-(8) were calculated. The 3-D histogram of the equalized
image proved to be uniform, but its colors were largely dis-
torted invoking an unsatisfactory visual perception. This re-
sult validated the inability of the RGB space to handle the
perceptual properties of color (hue, intensity, and saturation)
that is stressed in literature. More precisely, hue that deter-
mines the kind of color (i.e. red, green) should be left un-
changed in order to avoid the color distortion in images.

Contrary to the RGB space, the components of the HSI
space correspond directly to the perceptual attributes of
color. This is the reason why the proposed histogram equal-
ization approach was tested on HSI, where only the intensity
and saturation components were modified, since hue should
be left unchanged. That is, the transformation functions yI
and yS given yI defined by (6)-(7) were estimated with the
help of P(xI = k) and P(xS = s|xI = k) by employing (9)-
(10). The equalization was also tested by reversing the order
of transformations, i.e., by first equalizing with respect to yS
and then with respect to yI given yS. The latter transforma-
tion yielded visually unsatisfactory results. For this reason,
only the results of the histogram equalization through the
modification of the I component and the joint modification
of the I and S components are presented in Fig. 3 and Fig. 4.
The actual size of the images is larger than that shown. As
it can be easily observed, the equalized images have a better
contrast and they look more colorful. The only unwanted ar-
tifact one can reveal is the presence of the grey color in some
very small image regions.

The uniform joint distribution between I and S compo-
nents for the original and the equalized images were com-
pared by means of the entropy and the Kullback-Leibler di-
vergence.

Entropy which represents the average uncertainty of a
random variable is maximized in the case of uniform dis-
tribution [16]. The entropy of the bivariate color histogram
distribution is defined by:

H(xcc1
,xcc2

) =

−
K−1

∑
k=0

M−1

∑
s=0

P(xcc1
= k,xcc2

= s)



· log2

{
P(xcc1

= k,xcc2
= s)

}
. (12)

In Table 1 some representative entropy results are presented
for six different images. Besides the color images indexed
by 1 and 2, that are depicted in Fig. 3 and Fig. 4 another four
color image were employed. The latter images belong to the
same set of digitized Greek Orthodox Holy Icons with the
image indexed by 2. As it can be easily seen, the equalized
images have higher entropy than the corresponding original
images, as it was expected.

Table 1: Entropy of the bivariate color histogram distribution
of the original and the equalized images.

Image Index Original Equalized
1 12.388753 13.215272
2 11.951549 13.295968
3 11.876878 13.411052
4 11.939243 13.415663
5 12.001775 13.459489
6 12.689356 13.493082

The Kullback-Leibler divergence measures the differ-
ence between two probability distributions [16]. In our ex-
periments, Kullback-Leibler divergence was used in order
to measure how similar the histograms of the original and
the equalized images are to the uniform distribution. The
images probabilities which were taken under consideration
were those used for the entropy estimate. That is,

D( f (xcc1
,xcc2

)||g(xu,yu)) =
K−1

∑
k=0

M−1

∑
s=0

P(xcc1
= k,xcc2

= s)

· log2

(
P(xcc1

= k,xcc2
= s)

g(xu,yu)

)
(13)

where g(xu,yu) is a two-dimensional uniform distribution de-
fined in the same space with f (xcc1

,xcc2
). The Kullback-

Leibler divergence results for the processed images are pre-
sented in Table 2. The results demonstrate that the color dis-
tribution of the equalized images is more closer to the uni-
form distribution one than that of the original images.

Table 2: Kullback-Leibler divergence for the bivariate his-
togram for the original and the equalized images.

Image Index Original Equalized
1 2.503125 1.930227
2 2.806172 1.874292
3 2.857930 1.794522
4 2.814702 1.791326
5 2.771358 1.760948
6 2.294764 1.737663

5. CONCLUSIONS

Concluding, the presented color histogram equalization tries
to exploit the correlation between color components. It can
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Figure 3: (a) Original Image (Image Index 1), (b) Equalized
Image with smoothed probabilities, and (c) Equalized Image
by Adobe Photoshop.

be easily extended to color spaces with any number of color
components. Moreover, the algorithm is enhanced with bet-
ter probability estimates by means of multi-level smoothing,
thus eliminating the zero-frequency problem which produces
unwanted artifacts. The experimental results have shown the
efficiency of the algorithm in contrast improvement and col-
orfulness together with the absence of artifacts observed in
the traditional equalization processes. The validity of the vi-
sual results was also proved by the estimated values of the
entropy and the Kullback-Leibler divergence that were intro-
duced in order to assess the uniform nature of the probability
density functions.
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